RAWALPINDI BOARD 2012
PAPER Mathematics PART-I
(Objective Part)
Marks: 20

Note: You have four choice for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.

(A) 1
(B)
(C)
(D)

(A)
(B)
(C)
(D)

(A) -cosechx, cothx
(B)
(C)
(D)

(A)  -1/2x
(B)
(C)
(D)

(A)
(B)
(C)
(D)

(A) d/dx (cosx)
(B)
(C)
(D)

(A) cotx + c
(B)
(C)
(D)

(A) ln|tanx| + c
(B)
(C)
(D)

(A)
(B)
(C)
(D)

(A) 2
(B)
(C)
(D)

(A) -ecosx + c
(B)
(C)
(D)

(A) (1/2)ex2 + c
(B)
(C)
(D)

(A) 2/5
(B)
(C)
(D)

(A) y =7
(B)
(C)
(D)

(A) Infinite
(B)
(C)
(D)

(A) Parabola
(B)
(C)
(D)

(A)
(B)
(C)
(D)

(A) Ellipse
(B)
(C)
(D)

(A) x
(B)
(C)
(D)

(A) cos-1
(B)
(C)
(D)

Inter (Part-I) Rawalpindi Board 2012
Mathematics
Part I (Subjective)
Time Allowed: 3.10 Hours 
Max. Marks: 83

SECTION-I

2. Attempt any EIGHT short questions.

3. Attempt any EIGHT short questions.

4. Attempt any NINE short questions.

SECTION-II

Attempt any THREE questions.. (8 X 3 = 24)

Question #5 
a) Find the  
b) If y =x4 + 2x² + 2 ,prove that  

Question #6 
a) Evaluate:
b) Transform the equation 5x - 12y + 39 = 0 into two Intercept form and normal form.

Question #7 
a) Evaluate:  2 2  .
b) Minimize Z = 2x + y subject to constraints x + y ≥ 3, 7x + 5y ≤ 5 , x ≥ 0 , y ≥ 0

Question #8
a) Find the coordinates of the points of intersection of the line 2x + y = 5 and the circle x²+y²+2x-9 = 0
b) CFind a vector of length 5 in the direction opposite that
of  î - 2ĵ + 3ǩ

Question #9
a) Show that the equation 9x² - 18x + 4y² + 8y - 23 = 0 represents an ellipse. Find its elements.
b) Prove that in any triangle ABC c² = a²+b²-2abcosc