INTERMEDIATE
PART-II (12th CLASS)
MATHEMATICS
TIME ALLOWED: 30 Minutes
OBJECTIVE
MAXIMUM MARKS: 20
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER

Q.No.1

equals:-

(A) 0 
(B) -1  
(C) 1
(D) -2

(A) ℓn sec x + c
(B) ℓn |sec x + tanx| +c
(C) Sec x tan x + c
(D) Sec x + tan x + c

(A) y = cosx + c
(B) y = tan x + c
(C) y = cotx + c
(D) y = cotx + c

(A) 3 /2
(B) -2/3
(C) 1/3
(D) -3/2

(A) y = mx + c
(B) xcosα + ysinα = p
(C) x/a + y/b = 1
(D) x= 0

(A) 7x + 2y < 8
(B) x - 3y < 0
(C) 3x + 5y < 7 
(D) 3x + 5y ≤ 3

(A) y-1=0
(B) y +1 = 0
(C) y - 4 = 0
(D) y + 4 = 0

(A) (± a, 0)
(B) (0, ± a)
(C) (0 ± ae)
(D) ab cosɵ

(A) ab
(B) –ab
(C) ab sinɵ
(D) abcosɵ

(A) 90°
(B) 60°
(C) 45°
(D) 30°

(A) (0, 1)
(B) (2, ∞)
(C) (1, ∞)
(D) (0, ∞)

(A) 0
(B) 1  
(C) – 1
(D) - ∞

(A) -3/2- x1/2
(B) -3/2. x1/2
(C) -3 x1/2
(D) -3/2. x1/2

(A) Sech2xcothx
(B) 2Sechx
(C) SechxCothx
(D) -2Sechx Cothx

(A) 2√x
(B) 2√x ℓn2
(C)
(D)

(A)
(B)
(C)
(D) Cot-1x

(A) f(x) < 0
(B) f’(x) > 0
(C) f’(x) = 0
(D) f’(x) ≥ 0

(A) exCos x + C
(B) ex Sinx + c
(C) –ex Sinx + c
(D) xesinx + c

(A) √tanx + c
(B) 2√tanx + c
(C) √cosx + c
(D) 2√cotx + c

(A)
(B)
(C)
(D)

INTERMEDIATE
PART-II (12th CLASS)
MATHEMATICS
TIME ALLOWED: 2.30 Hours

SUBJECTIVE
MAXIMUM MARKS: 80
NOTE:
Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.  (8 x 2=16)

3. Attempt any eight parts. (8x2=16)

4. Attempt any nine parts. (9x2=18)

SECTION-II

Attempt any three questions. (3x10=30)

5. (a) Evaluate
(b) If y = tan(2Tan-1x/2), show that dy/dx = 4(1+y2) / 4+x2

6. (a) Evaluate

(b) Find an equation of line through the intersection of the lines x-y-4=0 and  7x + y + 20 = 0 and parallel to the line 6x + y – 14 = 0

7. (a) Evaluate 1/4∫1/6 cos2ɵ cot2ɵ dɵ
(b) Graph the feasible region of the system of linear inequalities.2x+y≤10, x+4y≤12, x+2y≤10, and x≥0, y≥0

8. (a) Find an equation of the circle that passes through the points A(4, 5), B(- 4, -3), C(8, -3)
(b) Prove that the line segment joining the mid points of the sides of a quadrilateral taken in order form a parallelogram.

9. (a) Prove that the latusrectum of the ellipse
(b) By using vectors prove that Cos(α + β) = Cosα.Cosβ-Sinα.Sinβ