SAHIWAL BOARD 2013
PAPER MATHEMATICS
PART-I

TIME : 20 MIN.
(OBJECTIVE PART)
MARKS: 17

NOTE: YOU HAVE FOUR CHOICES FOR EACH OBJECTIVE TYPE QUESTION AS A,B,C and D. THE CHOICE THAT YOU THINK IS CORRECT ; FILL THAT CIRCLE IN FRONT OF THAT QUESTION NUMBER. USE MARKER OR PEN TO FILL THE CIRCLES. CUTTING OR FILLING TWO OR MORE CIRCLES WILL RESULT IN ZERO MARK IN THAT QUESTION.

(a)r cosθ + r sinθ                      
(b)rcosθ + irsinθ              
(c)cosθ +sinθ                    
(d)sinθ +icosθ

(a)16                                             
(b)4                                       
(c)8                                       
(d)12

(a)m+n                                        
(b)m-n                                 
(c)m x n                               
(d)m÷n

(a)A                                              
(b)-A                                    
(c)A-1
(d)A2

(a)3,ω,ω2                                  
(b)-3,-3ω,3ω2                  
(c)3,3ω,3ω2                      
(d)1,ω,ω2

(a)b2-4ac=0                                
(b) b2-4ac>0                      
(c) b2-4ac<0                       
(d)4ac-b2>0

(a)proper fraction                   
(b)improper fraction     
(c)equation                       
(d)in – equation

(a)a1 + nd                                   
(b)a1 + (n-1)                      
(c)a1 +n/d                           
(d)a1 d+n

(a)                                      
(b)                              
(c)2                                       
(d)

(a)1                                                               
(b)n!                                     
(c)n!/ (n-r)!                       
(d)(n-1)!

(a)P(A) +P(B)                            
(B)P(A) – P(B)                   
(C)P(A) P(B)                      
(D)P(A)+P(B)-P(AпB)

(a)n>2                                          
(b)n≥2                                 
(c)n<2                                  
(d)n≤2

(a)x<2                                          
(b)x>2                                  
(c)x<1/2                              
(d)x>1/2

(a) 1-quad                                     
(b) 2-quad                            
(c) 3-quad                           
(d) 4-quad

(a)tan θ                                       
(b)- tanθ                             
(c)cot θ                                
(d)-cot θ

(a)R                                               
(b)[-1,1]                              
(c)R-nπ                                
(d)R -2nπ

(a)45°                                           
(b)30°                                   
(c)80°                                   
(d)90°

(a)abc/4Δ                                   
(b)Δ/s                                  
(c)s/Δ                                   
(d)Δ

(a)π/6                                          
(b)1/2                                  
(c)                            
(d)1

(a){π/2 + 2nπ}                           
(b){-π/2 + 2nπ}                 
(c){π + 2nπ}                       
(d){π + nπ}

TIME : 3:10 HOURS
(SUBJECTIVE PART)
MARKS : 83
SECTION II

2.    ATTEMPT ANY EIGHT SHORT QUESTIONS. (8 x 2 = 16)

3. attempt any eight short questions. (8 x 2 = 16)

4. Attempt any six short questions. (6 x 2 = 12)

Attempt any three questions. (8 x 3 = 24)

5.(a) Show that the statement is a tautology . ~(p→q) → p.
(b) Verify (AB)-1 = B-1 A-1 , if A=   B =

6.(a) Solve the equation (x – 1/x)2   3(x +1/x)  = 0
(b)  Resolve into partial fractions  x2/ (x2+ 4) (x+ 2)

7.(a) Find “n” so that  an + bn/an-1 + bn-1
(b) Use mathematical induction to prove the formulae for every positive  integer n 1+ ½ + ¼ +……………. 1/ 2n-1 = 2 [1-1/2n]

8.(a) Prove the following identity sin6 θ +cos6 θ = 1 -3sin2 θcos2 θ
(b) If a,β,y are angles of a triangle ABC show that.Cot a/2  + cot   β/2  + cot  y/2  = cot  a/2  cot β/2 cot y/2

9.(a) Prove the law of
(b) Find the value of cos-1 4/5  without using calculator.