FAISALABAD BOARD 2014
PAPER MATHEMATICS
PART-II
Time: 30 Min
(Objective Part)
Marks: 21

 Note: Four Answers are given against each column A, B, C & D, Select the write answer and only separate answer sheet. Fill the circle A,B,C or D with pen or marker in front of that question number.

(A)
(B)
(C) 1
(D) 180

(A) -2
(B) –x+2
(C) 2
(D) x+2

(A)
(B)
(C)
(D) ƒ(x)

(A) =0
(B) =-1
(C)
(D)

5x4
3x2
2x2
2x3

(A)
(B)
(C)
(D) None of these

(A) 2
(B)
(C)
(D)

(A)
(B)
(C) 0
(D) 1

(A) -1
(B) 0
(C) 1
(D) 2

(A)
(B) x+c
(C) –x2+c
(D) Lnx

(A)
(B) +c
(C)
(D)

(A) -1
(B) 0
(C) 1
(D) 2

(A)
(B)
(C)
(D) None of these

(A)
(B)
(C) 2
(D) 3

(A) Square
(B) Rectanle
(C) Trapezium
(D) Paralelogram

(A)
(B) 2x+3 < 0
(C) 3x+4 < 0
(D) X < 0

(A)
(B)
(C) xy
(D) None of these

(A) x = 0
(B) y = 0
(C) x = y
(D) x = -y

(A)
(B)
(C)
(D) 1,1,1

(A)
(B)
(C)
(D) 0

Subjective Part II
Section –I

2. Attempt any Eight parts.

3. Attempt any Eight parts

4. Attempt any nine parts

Section-II

Note: Attempt any THREE questions. Each questions carries 10 Marks

5. (a) Evaluate
(b) Show that

6.(a) Evaluate
(b) Prove that the linear equation ax+by+c = 0 in two variables x and y represents a straight line.

7.(a) Solve the differential equation
(b) Maximize ƒ(x,y) = 3x+y, subject to the constraints x+6y>9,3x+5y>15,x>0,y>0.

8. (a) Find equation of tangent to circle x2+y2 = 2perpendicular to line 3x+2y=6
(b) Prove that in any triangle ABC, b=c cosA+a cosC (By vectors method)

9. (a) Find an equation of ellipse whose focus is at (±3,0) and minor axis of length 10.
(b) Prove by vector method that sin(α + β) = sin α cos β - cos α sin β