Federal Board
HSSC-II 2014
MATHEMATICS
Time allowed: 25 Minutes
Marks: 20
NOTE
: Section-A is compulsory. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

SECTION — A

Q. 1 Circle the correct option i.e. A / B / C/ D. Each part carries one mark.

(A) Parametric      
(B) Implicit
(C) Explicit        
(D) Identity

(A) ∞
(B) -∞
(C) 0                 
(D) 1

  (A)
(B)
(C)
(D)

(A) cos-1 x             
(B) sin-1 x
(C) cosh-1 x       
(D) sinh-1 x

(A) ln|cosx|+ c
(B) ln|secx|+ c
(C) ln|sec2x|+ c
(D) sec2x+ c

(A) Inlcosxl + c
(B) In|secx|+ c
(C) In Isec2xl + c        
(D) sec2x + c

(A) Normal form                      
(B) Point-slope form
(C) Two intercept form
(D) Symmetric form

(A) 2                   
(B) -2
(C)                
(D) -   

(A) Left half plane      
(B) Right Half plane
(C) Upper half plane
(D) Lower half plane

(A) (4 1')           
(B) (1 2)
(C) (1 -1)         
(D) (

(A) (x - 1)(y - 2) + (x - 2)(Y - 3) = 0
(B) (x - 1)(x - 2) + (y - 2)(y - 3) = 0
(C) (x + 1)(x + 2) + (y + 2)(y + 3) = 0
(D) None of these

(A) y =-5                
(B) x =(C) y =       
(D) y =

(A) 0                   
(B)
(C) 1                   
(D)

(A) 45°, 45°, 60°
(B) 30°, 45°, 60°
(C) 45°, 60°, 60°
(D) 30°, 30°, 45°

(A) 4    
(B) 4
(C) 4                                       
(D) -4

(A) 6                   
(B) 32
(C) 13                  
(D) 26

(A) (-∞,+∞)          
(B) (1,+∞)
(C) (1, +∞)            
(D) 10, +∞)

(A) 0 ≤ x ≤ 2           
(B) 2 ≤ x < 4
(C) 0 < x < 2           
(D) 0 < x ≤ 2

(A)  + c
(B)  + c
(C)  + c
(D)  + c

(A) x = -5             
(B) x = 5
(C) y = 3        
(D) y = -3

MATHEMATICS HSSC-II
Section-B
(Mark 40)

Q.2 Attempt any TEN parts. All parts carry equal marks

SECTION — C
(Marks 40)

Attempt any Five questions. All questions carry equal marks.

Q.3. Prove that =logea

Q.4. Prove that y + x = 0 if x =  , y =

Q.5. Evaluate 

Q.6. If two verticles of an equilateral triangle are A(-3,0) and B (3,0), find the third vertex. How many of these triangles are possible.

Q.7. Graph the feasible region of the system of linear Inequalities and find the corner points ;

            3x + 2y ≥6, x+y≤ 4, x ≥ 0, y ≥ 0

Q.8. Find the equation of the tangent to the circle x2 +y2 = 25 through (7, -1)

Q.9. Prove that the points whose position vectors are

A(-6 + 3  + 2), 
B(3 -2  + 4),
C(5  -7 + 3),    
D(-13  +17 - )