Mathematics
Paper Code No. 81
Paper II (Objective Type)
Inter - A- 2015
Time Allowed : 30 Minutes
Inter (Part II)
Maximum Marks: 20
Session (2011 - 13) (2012 -14) (2013-15) (2014.16)
Note: Four possible choices A, B, C, and D to each question are given. Which choice is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.
(A) Result
(B) Domain
(C) Image
(D) None of these
(A)
(B)
(C)
(D)
(A)
e3x-4
(B) 15e3x-4
(C) -5e3x-4
(D) -15e3x-4
(A) e2
(B) e8
(C) e6
(D) e4
(A)
![]()
(B)![]()
(C)![]()
(D)
(A) tan
(B)
(C)
(D) tan-1![]()
(A) Sech2xCothx
(B) 2Sechx
(C) SechxCoth2
(D) -2 SechxCothx
(A) Cosx
(B) Tanx
(C) Sinx
(D) -Sinx
(A)
(B)
(C)
(D) Inx
(A) ln (ax+b)
(B) aln(ax+b)
(C)in(ax+b)
(D) loga(ax+b)
(A) 1
(B) ln2
(C) 2
(D) 3
(A) Sin-1x
(B) Cos-1x
(C) -Sin-1x
(D) -Cos-1x
(A)
(B)
(C)![]()
(D)
(A) -y > 4
(B) x - y ≥ 4
(C) x + y < 4
(D) x + y > 4
(A) x=0
(B) x= y
(C) y=a
(D) x=a
(A) 1 : 1
(B) 2 : 2
(C) 1 : 2
(D) 2 : 1
(A) x2 + y2 = r2
(B) x2 - y2 = r2
(C) x + y = r
(D) a - y = r
(A) 3
(B) 1
(C) 2
(D) 0
(A) 1
(B) -J
(C) 0
(D) i
(A) Right Side
(B) Left Side
(C) Upward
(D) Downward
Mathematics
(Subjective)
Inter-A-2015
Inter Part - II
Time: 2: 30 Hours
Session (201113)(2012, 14)(2013 15)(2014.16)
Total Marks : 80
Note: It is compulsory to attempt (8. 8) parts each from Q.No.2 and 3 While attempt any (9) parts from Q. No.4 and attempt any |(03) questions from Part II Write same Question No. and its Part No. as given in the question paper.(25x 2 = 50)
Q.2
Q.3
Q.4
Part II
5. (a) Evaluate
(b) If y = eax Sinbx then show that -2a
+ (a2+b2)y=0
6. (a) Find : dx
(b) Find an equation of the perpendicular bisector of the segment joining the points A (3,5 ) and B ( 9,8)
7. (a) Evaluate dx
(b) Minimize f ( x , y ) = 3x + y ; subject to constraints 3x + 5y 15; x + 6y ≥, 9; x ≥0; y≥0
8. (a) Find the Coordinates of the point of intersection of the line.x + 2y = 6 with the circle x2 + y2 - 2x - 2y - 39 = 0
(b) Prove that Cos (α- β) = CosαCosβ + Sin α Sinβ
9. (a) Find the Focus, Vertex and the Directrix of the Parabola ( x - 1 )2 = 8 ( y + 2 )
(b) Find the area of the triangle determined by P, Q, R P (1, - 1, - 1),Q (2, 0,-1), R (0, 2, 1)