FEDERAL BOARD
MATHEMATICS HSSC-II (2015)
SECTION-A (Marks 20)
INTER PART-2
Time allowed: 25 Minutes
NOTE: - Section-A is compulsory. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/Overwriting is not allowed: Do not use lead pencil,
Q1. Circle the correct option i.e. A/B/C/D. Each part carries one mark.

A. [1, )
B. (-, -1)
C. [-1,1]
D. [2,)

A.
B.
C.
D. None of these

A. x-
B. 1-
C. x+
D. x-

A.
B.
C.
D. 16P2

A.  
B.
C.
D.

A.   
B.
C.
D. None of these

A. Ellipse
B. Circle
C. Hyperbola
D. Parabola

A.
B.
C.
D. None of these

A. 28
B. 48
C. 58
D. 20

A. x
B. y
C.
D.

A.
B.
C.
D.  

A. (1,)
B.  
C. (
D. None of these

A. m1 + m2 = 0
B. m1m2 = 1
C. m1m2 = -1
D m1- m2 = 0

A. Maximum region
B. Minimum region
C. Feasible region
D. Objective function

A. (5 , 3)
B. (5, -3)
C. (-3, 5)
D. (3, 5)

A. Parabola
B. Circle
C. Hyperbola
D. Ellipse

A. (-4,0)
B. (0, -4)
C. (4, -4)
D. (0, ±4)

A.  
B.
C.
D. None of these

A.    + 8
B.  + 8
C.   + 8
D.  -6 + 8

A. 2 -
B. 2 -
C. 0
D. None of these

FEDERAL BOARD
MATHEMATICS HSSC-II (2015)
Time allowed: 2:35 Hours
Total Marks: 80
Note: Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answersheet i.e. Sheet-B if required. Write your answers neatly and legibly.


SECTION - B (Marks 40)


Q.2 Attempt any TEN parts. All parts carry equal marks.


SECTION — C


Q.3 if
Discuss continuity at x = 2 and x = -2
Q. 4 Solve the differential equation
Y – x  = (1 + x )
Q. 5 If y = acos(n x)+bsinin x Prove that  
X2     +   x   +  y =0
Q. 6 find the area of the region bounded by the triangle whose sides are
X - 2y-6 = 0,                        3x – y + 3 = 0, 2x + y – 4 = 0
Q. 7 maximize the function defined as;
f(x , y) = 2x + 3y  subject to the constraints, 2x + y ≤ 8; x + 2y≤ 14 x ≥ 0; y ≥ 0.
Q.8 Find the equation of the fangents to the ellipse +   Which are parallel to the line 3x + 8y+1=0, also find the points of contact.
Q. 9 A particle is displaced from the point A (5, -5, -7) to the point B (6, 2, -2)under the action of constant force define by 10 — + 11, 4 +5 + 9 and – 2 + - 9 show that the total work done by the force is 102 units.