Federal Board (2016)
MATHEMATICS HSSC-I
SECTION-A Marks 20)
Time allowed: 25 Minutes
NOTE: Section-A is compulsory and comprises pages 1-2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowe(D) Do not use lead pencil.
Q1. Circle the correct option i.e. A / B / C / (D) Each part carries one mark.
(A) r1 r2 r = r3
(B) r3 = 3r1r2r3
(C) 3r = r1 + r2 + r3
(D) 3r = r1 r2 r3
(A) -π
(B)
(C) π
(D) -
(A)
(B) -1
(C) 1
(D)
(A) n(A/B)=n(A)-n(B)
(B) n(AB)=0
(C) n(AB)= n(A)+n(B)
(D) n(AB)=n(A)-n(B)
(A)
p
q
(B)q
p
(C) qp
(D)q
p
(A) A monoid but a group
(B) A group
(C) A groupiod only
(D) A semi group but not monoid
(A) Rational and unequal
(B) Complex
(C) Real and equal
(D) Real and unequal
(A) |A| = |-At|
(B) |A2| = |A|
(C) |A| =|-A|
(D) |A| = |At|
(A) (2.0)
(B) Solution does not exist
(C) (0,1)
(D) (2.2)
(A) -1+
![]()
(B) 2
(C) 1 -![]()
(D) -1 -![]()
(A) 8
(B) 10
(C) 4
(D) 12
(A)
(B)
(C)
(D)
(A) 2ab
(B)
(C) 4ab
(D) 4a2b2
(A) 4
(B) 2
(C)
(D)
(A)
(B)
(C)
(D)
(A) 0
(B) 2
(C) 1
(D) -1
(A) 8th term
(B) 5th term
(C) 6th term
(D) 7th term
(A) R
(B) R/ lnπ’n є Z│
(C) -1 ≤ y ≤ 1
(D) y ≤ -1 or y ≤ 1
(A) 120°
(B) 150°
(C) -60°
(D) 30°
(A) 45°
(B) 55°
(C) 145°
(D) 65°
MATHEMATICS HSSC-I
Time allowed: 2:35 Hours
Total Marks Section B & C: 80
NOTE: Section-'B' and 'C' comprises pages 1-2 and questions therein are to be answered on the separately provided answer book. Answer all questions from Section 'B' and Section ‘C’. Use supplementary answer sheet i.e. Sheet-B if require(D) Write your answers your neatly and legibly.
SECTION - B
(Marks 40)
2. Attempt any TEN parts. All parts carry equal marks. (10x4=40)
SECTION — C
(Marks 40)
Note: Attempt any FIVE questions. All questions carry equal marks. (5x8=40)
Q.3 Show that the logical statement
̴ q ˄ (p→q) → ̴p is a tautology.
Q.4 Solve the equation
|x 0 1 1 |
|0 1 1 -1 |= 0
|1 -2 3 4 |
|-2 x 1 -1 |
Q.5 Solve the equation (x -2 , 3 (x+
2 = 0
Q.6 if y x ,
x2 ,
x3 ,………………and if 0 ˂ x ˂
then show that x
Q.7 Use the principal of mathematical induction to show that 12 + 32 +52 +.....(2n - 1)2 for every positive integer n.
Q.8 = tan Ѳ + sec Ѳ
Q.9 =
+
+