Federal Board HSSC-II (2016)
MATHEMATICS
Time- 25 Minutes
Marks: 20
SECTION - A (Marks 20)
1. Circle the correct option i.e. A/B/C/(D) Each part carries one mark.
(A) 25
(B) √25
(C) 5√2
(D) 25a
(A) Real umbers
(B) |1, ∞|
(C) |2, +∞|
(D) |-1, 1|
(A) x2 / a2 – y2/ b2 = 1
(B) x2+ y2 =1
(C) y2 = 4ax
(D) x2 / a2 + y2/b2 = 1
(A)
(B)
(C)
(D) 3 sin2 x
(A) ℓna
(B) axℓna
(C) axℓnx
(D) axℓna
(A)∫ ydx
(B) dy / dx
(C) f″(x)
(D) D2f/(x)
(A) 3/ 2x +5
(B) 3(2x 4 5)1/2
(C)
(D) 6(2x + 5) -1/2
(A) xex + c
(B) xex
(C) xex – ex + c
(D) xex + ex + c
(A) X3/3 + x + c
(B) 10/33
(C) 10
(D) 10/3
(A) xy = 1
(B) zero
(C) xy = 0
(D) xy = c
(A) m1 – m2 = -1
(B) m1 . m2 = -1
(C) m1 + m2 = -1
(D) m1 = m2
(A) y-5 / x-2 = m
(B) y= 5x + 2
(C) y = x+2
(D) y = 2x + 5
(A) Does not exist
(B) Is finite
(C) Exists
(D) Is infinite
(A) Inequality
(B) Equation
(C) Not inequality
(D) Identity
(A)
(B) g2 + f2 - c
(C) g2 + f2
(D) (-g, -f)
(A) Tangent
(B) Secant
(C) Radius
(D) Normal
(A) Circle
(B) Parabola
(C) Ellipse
(D) Hyperbola
(A) 3(5), -4(5)
(B) 3i - 4j
(C)
(D)
(A) Perfect squares
(B) Parallel
(C) Perpendicular
(D) Concurrent
MATHEMATICS HSSC-II (2016)
Time allowed: 2:35 Hours
Total Marks : 80
Note: Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if require(D) Write your answers neatly and legibly.
SECTION - B (Marks 40)
2. Attempt any TEN parts. All parts carry equal marks.
SECTION - C
Q.3 If f(x) =
-
Q.4 Show that
Q.5 Solve the differential equation
Q.6 Find the interior angles of the triangle whose vertices are A(-2, 11), B(-6, -3), C(4, -9).
Q.7 Maximize f (x.y) = 2x + 5y subject to the constraints -x ≤ 8; -y ≤ 4 ; x ≥ 0; y ≥ 0
Q.8 Let a be a positive number and 0 < c < (A) Let F (c, 0) and F’(-c, 0) be two given points prove that the locus of points P (x, y) such that |PF| + |PF| = 2a is an ellipse.
Q-9 Find a unit vector perpendicular to the plane containing a and I, . Also find sine of angle between them.