Inter (Part-I) Lahore Board 2016
Mathematics
Part I (Objective Type)
Time Allowed: 30 Minutes
Max. Marks: 20
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.
Question #1
Circle the correct option i.e. A/B/C/D. Each part carries one mark.
(A) ef’(x)
(B) e f’(x).f’(x)
(C) f’(x) / ex
(D) ef(x) / f’ (x)
(A) 1
(B) 2
(C)![]()
(D) 0
(A)
![]()
(B)![]()
(C)
(D)
(A) 1
(B) 2
(C) ℓn2
(D) ℓn
(A) sinh-1x
(B) cosh-1x
(C) tanh-1x
(D) cosech-1x
(A) 1/2(2x+3)1/2+C
(B) 2/3(2x+3)3/2 + C
(C) 1/3(2x+3)1/2 + C
(D) 1/3(2x+3)3/2 + C
(A) c = -am2
(B) c = a/m
(C) c = a (1 + m2)
(D) c = m/a
(A) -1
(B) 0
(C) 1
(D) ∞
(A)
![]()
(B)
(C) (-∞, ∞)
(D) (-3/2, 3/2)
(A) -1
(B) 0
(C) 1
(D) 2
(A) esin x.cos x
(B) esin x.sinx
(C) ecos x.cos x
(D) sinx .esin x
(A) 3x – y - 9 = 0
(B) 3x + 9y + 7 = 0
(C) 2x - 6y - 18 =0
(D) x - 3y + 9 = 0
(A) 9 / 2
(B) 9 / 4
(C) 16 / 9
(D) 9 / 16
(A) y = cos x + c
(B) y = sec x + c
(C) y= cos2 x + c
(D) y= tan x + c
(A) 2x-1
(B) 2xℓn2
(C) 2x / ℓn2
(D) ℓn2 / 2x
(A) f”(c) < 0
(B) f”(c) = 0
(C) f”(c) > 0
(D) f”(c) ≥ 1
(A) tan x
(B) cot x
(C) -tan x
(D) - cot x
(A) ℓn (cos x) + c
(B) ℓn (sin x) + c
(C) -cosec2 x + c
(D) ℓ (sec x) + c
(A) a = 0
(B) b = 0
(C) c = 0
(D) a = 0, c = 0
(A) 40
(B) 60
(C) 80
(D) 120
Inter (Part-II) Lahore Board 2016
Mathematics
Part II (Subjective)
Time Allowed: 2.30 Hours
Max. Marks: 80
Section I
Q.2 Write short answers to any Eight (8) questions: 16
Q3. Write short notes on any EIGHT (8) questions: 16
Q4. Write short answers to any NINE (9) questions: 18
SECTION-II
Note: Attempt any THREE questions.
Question #5.
(a) Evaluate
(b) Differentiate w.r.t x
Question #6
(a) Evaluate
(b) Find distance between 3x + 4y + 3 = 0 and 3x - 4y + = 0 Also find equation of parallel
line lying midway between them. 5
Question #7
(a) Evaluate 5
(b) Maximize f(x,y) = x + 3y subject to the constraints 5
2x + 5y ≤ 30 , 5x + 4y ≤ 20 , x ≥ 0, y ≥ 0
Question #8
(a) Find the length of the chord cut off from the line 2x+3y= 13 by the circle x2 + y2 = 26 5
(b) Prove that in any triangle ABC by vector method a2=b2+c2-2bc cos A 5
Question #9
(a) Show that the equation 9x2-18x+4y2+8y-23 = 0 represents an ellipse. Find its elements (foci vertices, directnces) 5
(b) Find volume of the tetrahedron whose vertices are 5
A(2,1,8), B(3,2,9), C(2,1,4), D(3,3,10)