Rawalpindi board (2016)
Mathematics (objective Type)       
Time: 30 Minutes
Marks: 20

Note: Four Answers are given against each column A,B,C &D. Select the  write answer and only separet answer sheet, fill the circle A,B,C or D  with pen or marker in front of that question number.

 

(a) Z2
(b) ()2
(c) Z
(d)

(a) A'
(b) B'
(c) A'U B’
(d) A ∩ B

(a) Zero
(b) 1
(c) 3
(d) 2

(a) A
(b) -A
(c)|A|
(d) -|A|     

(a) A‑1 B-1
(b) B-1 A‑1
(c) BA
(d) AB

(a)  
(b)  
(c)
(d) –x

(a)2. -3
(b) -2 , 3
(c) 2, 3
(d) -2 , 3

(a) Equation
(b) Conditional
(c) Identity
(d) Fraction

(a) 4
(b) 5
(c) 10
(d) 2

(a) a1yn
(b) a1yn-1
(c)
(d)

(a) Zero
(b) 1
(c) 2
(d) -1

(a) 1
(b) n
(c) Zero
(d) 2

(a) an-r xr
(b) an-r xr
(c)   ar xn-r
(d)  an-r xr

(a) 8
(b) 10
(c) 16
(d) 32

(a) 1
(b) Zero
(c) sec2 0
(d) 2

(a) sin β
(b) - sin β
(c) cos β
(d) - cos β

(a)   
(b)  
(c)  
(d)

(a) 
(b)   
(c)
(d)    

(a) 1+ 2x2
(b) 1–x2
(c)
(d)

(a) I &IV
(b) I & III
(c) III & IV
(d) II & IV

 

 

 

Rawalpindi board (2016)
part I
Mathematics (Subjective type)       
Time: 2:30 Hours
Section-I
Marks: 80


2. Attempt any Eight Parts.16

3.Attempt any Eight Parts. 16

4. Attempt any Nine Parts.18


SECTION-11

Attempt any THREE questions. Each questions carries 10 marks.


5.(a) Use Cramer's rule to solve the system:
2x + 2y + z = 3 ; 33x – 2y -2z = 1 ; 5x +y – 3z = 2

(b)
If a and β are the roots of x2-3x+5 = 0 from the
equation whose roots are  and  .
6.(a) Resolve into partial fractions.
(b) For what value of n is G.M between a and b.

7.(a) How many arrangements of the letters of the word ATTACKED can be made if each arrangement begins      with and ends with K.
(b) Find the co-efficient of x5 in the expansion of 10

8.(a)
Prove the identity
sin6  – cos6  = (sine2 –cos2 )(1–sine2 cos2).
(b) If sin a= and cos=  where 0 < a < π/2 and
0<β< show that sin (a-β) =

9.(a) The sides of a triangle are x2+ x +1,2x +1 and x2 -1 prove
that the greater angle of the triangle is 120°.
(b) Prove that tan-1  + tan-1  = tan-1  + tan-1  .