SARGODHA BOARD --2016
MATHEMATICS
PART-I

(Objective Part)
Note: You have four choice for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.

Q.1

(a) (1,0)
(b) (0,1)
(c) (-1,0)
(d) (0,0)

(a) 16
(b) 8
(c) 4
(d) 6

(a) K|A|
(b) K2|A|
(c) K3 |A|
(d) K4|A|

(a) (0,0,0)
(b) (1,0,0)
(c) (0,1,0)
(d) (0,0,1)

(a) -18
(b) 9
(c) -9
(d) 18

(a) p= 1
(b) p= 0
(c) q= 1
(d) q= 0

(a) Proper fraction
(b) Identity
(c) Improper fraction
(d) Equation

(a) 2√5
(b) √2
(c) 3√2 
(d) 2

(a) H.P
(b) A.P
(c) G.P
(d) Arithmetic Series

(a)4P1
(b) 4P2
(c) 4P4
(d) 5P4

(a) 1 - P (E)
(b) 1 + P (E)
(c) P (E) -1
(d) 2 - P (E)

(a) Monomial
(b) Trinomial
(c) Polynomial
(d) Binomial

(a) n
(b) n+1
(c) n-1
(d)  n-2

(a)  (0 1)
(b) (1 , 0)
(c) (1 , 1)
(d) (0 , 0)

(a) tan θ
(b) – tan θ
(c) cot θ
(d) None of these

(a) π
(b) π/2
(c) π  /3
(d) 2 π           

(a)∆/abc
(b) abc/∆
(c) a/2sin α
(d) ∆/s

(a) ∆/s-a
(b) ∆/s-b
(c) ∆/s-c 
(d)s-a/∆

(a) π/3
(b) π/6
(c) -1/2
(d) 1/2

(a) { π /4, 5 π /4}
(b) { π /8, 5 π /8}
(c) { π /4, 3 π 4}
(d) { π /6, 5 π /6}

 

(Subjective Part)
SECTION-I


2. Attempt any Eight Parts.

3. Attempt any Eight Parts.

4. Attempt any Nine Parts.

SECTION II


Attempt any THREE questions. Each questions carries 10 marks.

5.(a) Use Cramer's rule to solve the system of equations.

3x1 + x2 — x3 = -4
X1 + X2 — 2X3 =  -4
—x1 + 2x2 —x3 = 1

(b) Show that the roots of x2 + (mx+ c)2 =a2 will be equal I c2=a2 (1+ m2)

6.(a) Resolve into Partial Fractions

(b) If y = 2/3x + 4/9x2 + 8/27x3 + ….and 0< x< 3/2, then show that x= 3y/2(1+y)

7.(a) Prove that n-1Cr + n-1 Cr-1= n Cr .

(b) Use binomial theorem to show that

1+1/4+ 1.3/4.8 + 1.3.5/4.8.12 + ……=

8.(a) If cosec θ = m2+1/2m and m>0 , Find the values of the remaining trigonometric ratios.

(b) Show that (without Tables/calculator) cos 20° cos40° cos 80° = 1/8 .

9.(a) Prove that in an equilateral triangle:

r: R: r1 :r2 :r3 = 1:2: 3: 3: 3
(b) Prove that sin-1  + cot-1 3=