Federal Board 2017
INTERMEDIATE PART-II (12th CLASS)
Mathematics (NEW SCHEME)
TIME ALLOWED: 20 Minutes
MAXIMUM MARKS: 15
OBJECTIVE   
Note: You have four chokes for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not salve question on this sheet of OBJECTIVE PAPER.

Q.No.1

A. 0
B. -64
C. 24
D. 28

A.
B.
C.
D.

A.
B. 31
C. -1
D. 1

A.
B.
C.   
D.

A.        
B.
C.      
D.

A.  
B.
C. 2  
D.

A. 0         
B. 1         
C. -2       
D. -1

A.  
B.
C.
D.

A.        
B. 0         
C. -       
D.

A. 5         
B. -5
C. -35
D. 0

A. 0         
B. 4
C. 2         
D. 8

A. 1         
B. 2
C.         
D. 0

A. 5         
b. 1         
C. 0         
D.

A.  
B.
C.
D.

A. -2       
B. 2         
C. 0         
D. 1

A. (0,0)  
B. (3,0)
C. (1, 1) 
D. (-2, 1)

A. 16      
B. 8
C.          
D. 4

A. (-3, 0)
B. (0,3+ )
C. (3, 0) 
D. (0, 3)

A.           
B. 
C. x = -
D. x =

A. 3         
B. -3
C. -15
D. +15

Federal Board 2017
INTERMEDIATE PART-II (12th CLASS)
Mathematics (NEW SCHEME)
TIME ALLOWED: 2.10 Hours
MAXIMUM MARKS: 60
SUBJECTIVE

SECTION-I

2. Attempt any Eight of the following. All carry equal marks.

SECTION - C

Note: Attempt any FIVE parts. All questions carry equal marks.
Q.3     If  = 
Discuss continuity at  and

Q.4     Find the extreme values of the function occurring in the interval [0, 2

Q.5     Evaluate  

Q.6     Show that the lines and  are concurrent and the third-line bisects the angle formed by the first two lines.

Q.7     Graph the feasible region of the system of linear inequalities


and find the corner points.

Q.8     Find the equation of circle passing through the points A (1, 4) B (-1, 8) and tangent to the line

Q.9     Prove that the altitudes of a triangle are concurrent.