Lahore Board 2017
MATHEMATICS-II
Inter (Part-II) 2017
Mathematics
Group-I
PAPER: II
Time: 30 Minutes
(OBJECTIVE TYPE)
Marks: 20
Note: Four possible answers, A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

(a) ex - e-x
(b) ex + e-x
(c)  
(d)

(a) 0
(b) 1
(c)  
(d) 2

(a) 4 cot 2x cosec 2x
(b) -4 cot 2x cosec² 2x
(c)  4 cot² 2x cosec 2x
(d) -4 cot 2x

(a)  
(b)
(c) ex+h
(d) hex+h

(a) 1
(b) 0
(c)
(d) -1

(a) 1 -  
(b)
(c) 0
(d)

(a) 2(x² + 1)
(b)
(c) 2x(x² + 1)
(d) 4x(x² + 1)

(a) n (x + 2) + c
(b) x + 2 n (x + 2) + c
(c) x - 2 n (x + 2) + c
(d) x - n (x + 2) + c

(a) ex. + c
(b)
(c)
(d) ex  x+c

(a) 0
(b)
(c)
(d)

(a) sec x tan x + c
(b) sect x tan x + c  km
(c) n (sec x - tan x) + c
(d) n (sec x + tan x) + c

(a) h² - ab = 0
(b) h² + ab = 0
(c) a+b=0
(d) a-b=0

(a) m1n2 = 0
(b) m1n2 + 1 = 0 V
(c) m1n2 - 1 =0
(d) m1 + n2 = 0

(a) 0
(b) 2
(c)
(d)

(a) 1 point V
(b) 0 point
(c)  points
(d) 2 points

(a) 9x + 2y < 8
(b) - x + 3y < 0
(c) 3x + 5y < 6
(d) 3x + 5y > 4

(a) Circle
(b) Parabola
(c) Ellipse
(d) Hyperbola 

(a)  
(b) 
(c)  
(d)  

(a) Right angle
(b) Obtuse angle
(c) Reflexive angle
(d) 0°

(a) 0
(b) 2
(c) 1
(d) 4

MATHEMATICS-II
Inter (Part-II) 2017
Mathematics
Group-I
PAPER: II
Time:2: 30 Hours
Marks: 80
(SUBJECTIVE TYPE)

2. Write short answer to any EIGHT(8) questions
  1. Express area of circle as a function of its circumference.
  2. Show that x=at2,y=2at, are parametric equations of parabola y2=4ax
  3. Evaluate
  4. Find derivative of
  5. Differentiate
  6. Define increasing and decreasing function
  7. Determine the interval in which f(x)=4-x2 is increasing x  (-2,2)
  8. Find , if y=sin h-1
  9. Find f(x) if f (x)=ex(a+n x )
  10. Find  if y=tan h(x2)
  11. Find  if y=sin1
  12. Differentiate x2.sec4 x

3. Write short answer to any EIGHT(8) questions

  1. Using differentiate, find   in the equation xy +x=4
  2. Evaluate
  3. Evaluate
  4. Evaluate
  5. Evaluate
  6. Evaluate
  7. State fundamental theorem of calculus in definite integral
  8. Evaluate
  9. What is order of a differential equation?
  10. Solve the differential equation sin y cosec x
  11. Indicate the solution set of the system of linear inequalities x + y > 5 and –y +x < 1
  12. Graph the solution region linear inequality x + y < 5

4. Write short answer to any NINE (9) questions

  1. Find the mid-point of the line joining the two points A(-8,3),B(2,1)
  2. The points A(-5,-2) and B (5,-4) are ends of  a diameter of a circle, find the centre and radius of the circle.
  3. By means of slope, show the points line on the same line A(-1,-3),B(1,5),C(2,9)
  4. Find an equation of the vertical line through (-5,3)
  5. Convert the equation into two intercepts from 4x+7y-2=0
  6. Find the equation of circle with ends of a diameter at (-3,2) and (5,-6)
  7. Find the focus and directrix of the parabola y2=12x
  8. Find the equation of ellipse when foci (3,0) and minor axis of length 10
  9. Write the standard equation of hyperbola
  10. Fins the vector from the point A to the origin where  and B Is the point (-2,5)
  11. Find , so that
  12. Find the value of 3

Note: Attempt any THREE(3)questions
Q.5(a) Find
(b) Find  if x=a (cos t + sin t), y=a(sin t – t cos t)

Q.6 (a) Evaluate
(b) The vertices of a triangle are A(-2,3),B(-4,1),C(3,5), find the centre of the Circumcircle of the triangle

Q.7 (a) Find area between x-axis and curve y =
(b) Minimize f(x,y) = x+3y subject to constraints 2x+5y<30, 5x+4y<20    x>0,y>0

Q.8(a) Show that the line 3x-2y=0 and 2x+3y-13=0 are tangents to the circle x2+y2+6x-4y=0
(b) Prove that in any triangle ABC b=c cos A + a cos C by using vectors

Q.9 (a) Find the point of intersection of
(b) Fsind the vaues of (i)  (ii)

MATHEMATICS-II
Inter (Part-II)
Mathematics 2017
Group-II
PAPER: II
Time: 30 Minutes
(OBJECTIVE TYPE)
Marks: 20
Note: Four possible answers, A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

(a) Ellipse
(b) Circle
(c) Parabola
(d) Hyperbola

(a) e1/5
(b) e5
(c) e-5
(d) e-1/5

(a) 0
(b) 1
(c)
(d) 22

(a)
(b)
(c)
(d)

(a)
(b)
(c) 0
(d)

(a) cos x
(b) -cot x
(c) -tan x
(d) -cosec x

(a) Maclaurin's series
(b) Taylor series
(c) Power series
(d) Binomial series

(a) ln cot x + c
(b) ln cos x + c
(c) ln sin x +c
(d) ln sec x +c

(a) ex tan x + c
(c)  + c
(b) ex sin x  + C
(d) ex tan-1 x + c

(a)
(b)
(c)
(d)

(a) y = e²x
(b) y ce-x
(c) y = ex
(d) cex

(a) y=a
(b) y = b
(c) x = a
(d) x = b

(a) a1 a2 = 0
(b) a1 - b1 =
(c) a1b1 - a2b2 = 0
(d) a1b2 a2b1 = 0

(a) 30v
(b) 60°
(c) 45°
(d) 180°

(a)
(b)
(c)
(d) 0 

(a) Linear inequality
(b) Identity
(c) Equation
(d) Not inequality

(a) π 
(b) 2π
(c) 4π
(d) 8π

(a) x + 2= 0
(b) x-2=0
(c) y +2= 0
(d) y -2 = 0

(a) 1
(b) 2
(c) 3
(d)4

(a) 1
(b) a
(c) 0  
(d) b

MATHEMATICS-II
Inter (Part-II)
Mathematics 2017
Group-II
PAPER: II
Time: 2:30 Hours  
(SUBJECTIVE TYPE)
Marks: 80

2. Write short answer to any EIGHT(8) questions

  1. If f(x)= and g(x)= find g of (x)
  2. If f(x)=(-x+9)3 find f-1(x)
  3. Evaluate
  4. If y=(x2+5)(x3+7) find
  5. Find  if y2+x2-4x=5
  6. Differentiate  w.r.t.x
  7. Differentiaten(x2+2x) w.r.t.x
  8. If y=sin h-1 (ax+b)find
  9. If y= cos y find
  10. Prove that  sin -1x =
  11. Define point of inflection
  12. Define critical point

3. Write short answer to any EIGHT(8) questions

  1. Find dy in y=x2+2x when x changes from 2 to 18
  2. Evaluate
  3. Find
  4. Evaluate
  5. Evaluate
  6. Evaluate
  7. Write two properties f define integration
  8. Evaluate
  9. Solve the differential equation  
  10. Find the area between the x-axis and the curve y=4x-x2
  11. Define optimal solution
  12. Define decision variable

4. Write short answer to any NINE(9) questions

  1. Show that the points A(-1,2),B(7,5) and C (2,-6) are vertices of  a triangle
  2. Find h, such that A(-1,h), B (3,2) and(7,3) are collinear
  3. Convert the equation 4x +7y-2=0 into two intercept form
  4. Find an equation of the perpendicular bisector of the segment joining the points A (3,5) and (9,8)
  5. Check whether the point (-4,7) is above or below of the line 6x-7y+70=0
  6. Find an equation of tangent to the circle x2+y2=2 parallel to the line x-2y+1=0
  7. Define focal chord of parabola
  8. Find centre and vertices of ellipse =1
  9. Find vertices and equation of directories of hyperbola x2-y2=9
  10. Find a vector of length 5, in the direction of opposite that of v=i-2j+3k
  11. Find a scalar , so that the vectors 2i+j+5k and 3i+j+k, are perpendicular
  12. If a+b+c=0, ythen prove that a×b=b×c=c×a
  13. Prove that the vectors i-2j+3k,-2i+3j-4kamd i-3j+5k are coplanar

Section-II

Note : Attempt any THREE questions
Q.5(a) Prove that
(b) If y=tan (p tan-1x),show that (1+x2)y1-p(1+y2)=0

Q.6(a) Show that
(b) find the point three-fifth of the way along the line segment from A(-5,8) to B(5,3)

Q.7(a) Evaluate
(b)Graph the feasible region subject to the following constrains :

Q.8(a) find a joint equation to the pair if tangents drawn from(5,0) to the circle x2+y2=9
(b) prove that the angle in a semi-circle is a right angle

Q.9(a) derive equation of hyperbola in standard form
(b) by vector method, prove in any triangle ABC,