RAWALPINDI BOARD 2017
INTERMEDIATE
PART-II (12th CLASS)
Mathematics
(NEW SCHEME)
Group-I
TIME ALLOWED: 20 Minutes
MAXIMUM MARKS: 15
OBJECTIVE
Note: You have four chokes for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not salve question on this sheet of OBJECTIVE PAPER.

Q.No.1

(A)
(B)
(C) 2
(D) -2

(A)
(B)
(C)  
(D)

(A)  
(B) 
(C)  
(D)  

(A)  
(B)  
(C)  
(D)  

(A)  
(B)
(C)
(D)

(A)  
(B)  
(C)  
(D)  

(A)
(B)
(C)
(D)

(A)  
(B)  
(C)  
(D)  

(A) ay
(B) -ay
(C) a²y
(D) -a²y

(A)  
(B)  
(C)  
(D)  

(A) (-3 , 2)
(B) (3 , -2)
(C) (3 , 2)
(D) (-3 , 2)

(A) a x (b x c)
(B) a. (b x c)
(C) a. (b + c)
(D) a. (b - c)

(A) 1
(B) -1
(C) -2
(D) 2

(A)  
(B)  
(C)  
(D)  

(A)  
(B)  
(C)  
(D)  

(A)  
(B)  
(C)  
(D)  

(A) 3
(3) 4
(C) 6
(D) 2

(A) h² + ab = 0
(B) h² - ab 0
(C) a - b = 0
(D) a + b = 0

(A) 1
(B) 2
(C) 3
(D) 4

(A)  
(B)  
(C)  
(D)  

RAWALPINDI BOARD 2017
INTERMEDIATE
PART-II (12th CLASS)
Mathematics (NEW SCHEME)
TIME ALLOWED: 2.10 Hours
MAXIMUM MARKS: 60
SUBJECTIVE

SECTION-I

2. Attempt any Eight of the following. All carry equal marks.

3. Write short answers to any Eight questions.

4. Write short answers to any Nine questions.

SECTION-II

5. (a). Evaluate:
(b). If  then prove that  
6. (a). Evaluate
(b). Find equations of two parallel lines perpendicular to  such that the product of the x- and y- intercepts of each is 3.
7. (a). Evaluate:   
(b). Minimize  subject to the constraints  
8. (a). Show that the lines  and  are tangent to the circle  
(b). Prove that, by vector method  
9. (a). Find centre , foci and vertices of the hyperbola  
(b). Find volume of the tetrahedron whose vertices are A(2 , 1, 8) , B(3, 2 , 9), C (2, 1, 4) and D (3 , 3, 0)