SAHIWAL Board 2017
INTERMEDIATE
PART-II (12th CLASS)
Mathematics (NEW SCHEME)
TIME ALLOWED: 20 Minutes
MAXIMUM MARKS: 15
OBJECTIVE   
Note: You have four chokes for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not salve question on this sheet of OBJECTIVE PAPER.

Q.No.1

(A)
(B)
(C)
(D)  

(A)        
(B)        
(C)
(D)

(A)      
(B)     
(C)
(D)  

(A)
(B)
(C)
(D)

(A)
(B)
(C)
(D)

(A)  
(B)         
(C) 2
(D) 2

(A)      
(B)
(C)
(D)

(A)
(B)
(C)
(D) 3

(A) (x)   
(B) (a)
(C)
(D)

(A) Degree         
(B) Radian          
(C) Minutes        
(D) Second

(A) Real number           
(B) Integer         
(C) Rational number
(D) Irrational number

(A)
(B)
(C)
(D)

(A)           
(B)           
(C) 1         
(D) 0

(A) Right 
(B) Left    
(C) Upward        
(D) Downward

(A) x²+y²=
(B) x²+ y²= 5       
(C) x²+ y²= 25    
(D) (x -3)²+ y²= 5

(A) 7x+ 2y> 3     
(B) x- 3y> 0
(C) x+2y<6         
(D) x+ 3y> 0

(A) m1 m2+1 =0 
(B) m1 m2-1=0   
(C) m1= m2
(D) m1= -m2

(A) 0
(B) 1
(C) 2
(D)

(A) ordinate
(B) Abscissa
(C) Coordinate
(D) Distance from origin

(A) In sec x + c
(B) In cosec x + c
(C) In sin x + c
(D) in cot x

SAHIWAL BOARD
Note: Section I is compulsory.
Attempt any Three questions from Section II

and any Two parts from Section III.

SECTION-I

2. Write short answers to any Eight questions.

3. Write short answers to any Eight questions.

4. Write short answers to any Nine questions.

SECTION II

5. (a). Show that.   
(b). Differentiate w.r.t Sin-1

6. (a). Evaluate
(b). Find h such that the point A (,-1), B (0, 2) and C(4,-2) are vertices of right triangle with right angle at the vertex A.

7. (a). Evaluate tdt.
(b). Maximize 2x + 5y subject to the constraints 2y —x 8,x y4,x0,y.

8. (a). Find equation of circle passing thorough A (3, -1), B (0, 11) and having centre at 4x — 3y — 3 = 0
(b). Prove that the angle in a semicircle is a right angle.

9. (a). Find an equation of ellipse having the vertices (-1, 1), (5, 1) and Foci (4, 1) and (0, 1).
(b). Find volume of the parallelepiped for which given vectors are three edges.
,