	Mathematics	Inter Part I (2018) Lahore Board	Group – II
45	Time:30 Min.	Objective Type	Marks: 20

Four possible answers A, B, C and D to each question Note: are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

1.1 If ' ω ' be the cube root of unity, then $\omega^2 = 1$

(A)
$$\frac{-1-\sqrt{3}i}{2}$$
 (B) $\frac{1-\sqrt{3}i}{2}$ (C) 1 (D) $\frac{1+\sqrt{3}i}{2}$

(B)
$$\frac{1-\sqrt{3}i}{2}$$

(D)
$$\frac{1+\sqrt{3}i}{2}$$

Simplify form of $\frac{10!}{7!}$ is equal to :

$$(C)$$
 520

Multiplicative inverse of complex number - 3 - 5i is : 3

(A)
$$\frac{3}{34} + \frac{5}{34}i$$
 (B) $\frac{-3}{34} - \frac{5}{34}i$

(B)
$$\frac{-3}{34} - \frac{5}{34}i$$

(C)
$$\frac{-3}{34} + \frac{5}{34}$$

(C)
$$\frac{-3}{34} + \frac{5}{34}i$$
 (D) $\frac{-3}{\sqrt{34}} + \frac{5}{\sqrt{34}}i$

Formula for the sum of n terms of A.P. (Arithmetic 4 progression):

(A)
$$a_n = a_1 + (n-1)d$$
 (B) $s_n = \frac{n}{2}(a_1 + a_n)$

(C)
$$s_n = \frac{a_1(1-r^n)}{1-r}$$
 (D) $s = \frac{a_1}{1-r}$

Tabular form of $\{x \mid x \in E \land 4 < x < 6\}$ is: 5 $(B) \{4\}$ $(A) \{ \}$

Partial fractions of $\frac{1}{(x^2+1)(x-1)}$ are of the form:

(A)
$$\frac{A}{x^2+1} + \frac{B}{(x-1)}$$

(A)
$$\frac{A}{x^2+1} + \frac{B}{(x-1)}$$
 (B) $\frac{A}{x+1} + \frac{B}{(x^2+1)} + \frac{C}{x-1}$

(C)
$$\frac{A}{x^2+1} + \frac{Bx+C}{x-1}$$
 (D) $\frac{Ax+B}{x^2+1} + \frac{C}{x-1}$

(D)
$$\frac{Ax + B}{x^2 + 1} + \frac{C}{x - 1}$$

Roots of the equation $x^2 - 7x + 10 = 0$ are: 7

$$(A)(2, -5)$$

$$(B)(-2,5)$$

$$(D)(-2, -5)$$

If matrix $\begin{bmatrix} x & 4 \\ 2 & 8 \end{bmatrix}$ is singular then x = :

$$(B) -1$$

Geometric mean between 4 and 16 are:

(B)
$$\pm 8$$

(C)
$$\frac{32}{5}$$

10 A matrix A is said to be symmetric if:

$$(A) A^{t} = -A$$

(B)
$$A^t = A$$

$$(C)(\overline{A})^t = A$$

(D)
$$(\overline{A})^t = -A$$

Period of 3sin 2x is:

$$(A) 6\pi$$

(B)
$$2\pi$$

(D)
$$\frac{\pi}{2}$$

- With usual notation ${}^{n}C_{0} = :$
 - (A) 1

(B) 0

(C) n

- (D) 2
- 13 Solution of cot $\theta = \frac{1}{\sqrt{3}}$ in quadrant III:
 - (A) $\frac{5\pi}{4}$

(B) $\frac{7\pi}{6}$

 $(C)\frac{4\pi}{3}$

- $(D) \pi$
- 14 $2 \sin \left(\frac{P+Q}{2}\right) \cos \left(\frac{P-Q}{2}\right) = ---$
- (A) $\sin P + \sin Q$ (B) $\sin P \sin Q$ (C) $\cos P + \cos Q$ (D) $\cos P \cos Q$
- 15 sin-1 A sin-1 B = ----:
 - (A) $\sin^{-1} \left(A \sqrt{1 B^2} B \sqrt{1 A^2} \right)$
 - (B) $\sin^{-1}\left(A\sqrt{1-B^2} + B\sqrt{1-A^2}\right)$
 - (C) $\cos^{-1} \left(A \sqrt{1 B^2} B \sqrt{1 A^2} \right)$
 - (D) $\cos^{-1}\left(A\sqrt{1-B^2}+B\sqrt{1-A^2}\right)$
- 16 The sum of coefficients in the binomial expansion when n = 4 is:
 - (A) 1

(B) 8

(C) 16

- (D) 32
- Values of trigonometric functions of the quadrantal angle

3/16/2019

700 are same as of the angle.

(A) 30°

(B) 45°

(C) 60°

(D) 90°

18 With usual notation the "circum-radius" R = -----

(A) $\frac{\Delta}{s}$

(B) $\frac{abc}{4\Delta}$

(C) $\frac{\Delta}{abc}$

(D) $\frac{s}{\Delta}$

19 Which one is divisible by 2 for all positive integral values of n:

(A) $n^3 - n$

(B) $5^{n} - 1$

(C) $5^n - 2^n$

(D) $n^2 + n$

In law of tangents $\frac{2}{\tan\left(\frac{\beta+\gamma}{2}\right)}$ =

 $(A) \frac{a-b}{a+b}$

20

(B) $\frac{c-a}{c+a}$

 $(C)\frac{c-b}{c+b}$

(D) $\frac{b-c}{b+c}$

Mathematics	Inter Part I (2018) Lahore Board	Group - II	
Time:2.30 hrs	Essay Type	Marks: 80	

SECTION-I

Write short answers to any EIGHT (8) questions: 16
Does the set {1, -1} close w.r.t.:

(a) addition (b) multiplication

Find multiplicative inverse of the complex number (-4, 7)

iii $|\mathbf{r} z = 1 - i\sqrt{3}$, then find |z|

iv Write inverse and contrapositive of q → p
 v If A = {a, b, c}, then write all subsets of A and find P (A)
 vi Show that set of natural number is not a group w.r.t.

addition.

vii Define diagonal matrix with an example.

viii If $A = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$, then find A^{-1}

Without expansion show that $\begin{vmatrix} 6 & 7 & 6 \\ 3 & 4 & 5 \\ 2 & 3 & 4 \end{vmatrix} = 0$

Find four 4th roots of unity.

xi If α , β are roots of $x^2 - px - p - c = 0$, show that $(1 - \alpha)(1 + \beta) = 1 - c$

xii Find quadratic equation whose roots are 2ω , $2\omega^2$, where ω is cube roots of unity.

3. Write short answers to any EIGHT (8) questions: 16

Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into partial fractions.

Find the indicated term of the sequence 2. 6. 11. 17.----

$$a_7 = ?$$

fff Sum the series upto n-terms

$$\frac{1}{1 - \sqrt{x}} + \frac{1}{1 - x} + \frac{1}{1 + \sqrt{x}} + \dots = \dots$$

- Insert two G.Ms between 1 and 8.
- Find the sum of the infinite geometric series

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + - - - -$$

- vi Find the 12th term of the harmonic sequence $\frac{1}{3}, \frac{2}{9}, \frac{1}{6}, \dots$
- vii Evaluate $\frac{15!}{15!(15-15)!}$
- viii Find the value of n, when $\frac{12 \times 11}{21} = {}^{n} C_{10}$
- ix There are 5 green and 3 red balls in a box, one ball is taken out, find the probability that the ball drawn is green.
- Find the number of the diagonals of a 6-sided figure. X
 - xi Find the term involving x^4 in the expansion of $(3-2x)^7$.
 - xii Using binomial theorem find the value of $(1.03)^{\frac{1}{3}}$ upto three decimal places.
- Write short answers to any NINE (9) questions: 4. Define angle in the standard position with figure.
 - Find x, if $tan^2 45^\circ cos^2 60^\circ = x sin 45^\circ cos 45^\circ tan 60^\circ$
 - iii Prove that $\frac{1}{1+\sin\theta} \frac{1}{1-\sin\theta} = 2\sec^2\theta$
 - iv Find the value of sin 540° without using calculator.
 - Prove that $\tan \left(\frac{\pi}{-\theta} \theta \right) + \tan \left(\frac{3\pi}{-\theta} + \theta \right) = 0$

- vi Express sin (x + 45°)sin (x 45°) as sum or difference.
- vii Find the period of $\cos \frac{x}{6}$
- viii Find the area of triangle \triangle ABC, in which b = 37, c = 45 and α = 30°50'.
- ix Prove that $r r_1 r_2 r_3 = \Delta^2$ (Using usual notation)
- Reprove that $(r_1 + r_2)$ tan $\frac{\gamma}{2} = c$ (Using usual notation)
- xi Find domain and range of $y = \cos^{-1} x$
- xii Solve the equation $\sin x = \frac{1}{2}$
- xiiii Find solutions of cot $\theta = \frac{1}{\sqrt{3}}$ which lie in $[0, 2\pi]$

SECTION-II

Note: Attempt any THREE questions.

5.(a) Convert the following theorem to logical form and prove it by constructing truth table:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Solve the following system by reducing their augmented matrices to the echelon form:

$$x + 2y + z = 2$$

 $2x + y + 2z = -1$
 $2x + 3y - z = 9$

- 6.(a) If α , β are the roots of the equation $ax^2 + bx + c = 0$ then
 - find the equation whose roots are $\frac{-1}{\alpha^3}$, $\frac{1}{\beta^3}$
- (b) Resolve 2x⁴ into partial fraction 5

$$(x-3)(x+2)^2$$

- 7.(a) For what value of n, $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the positive geometric
- mean (G.M.) between a and b.

 If x is so small that its square and higher powers can be neglected, then show that:

 5

$$\frac{(1-x)^{\frac{1}{2}}(9-4x)^{\frac{1}{2}}}{(8+3x)^{\frac{1}{3}}} \approx \frac{3}{2} - \frac{61}{48}x$$

- **8.(a)** If cosec $\theta = \frac{m^2 + 1}{2m}$ and m > 0, $\left(0 < \theta < \frac{\pi}{2}\right)$, find the
- values of the remaining trigonometric ratios.

 (b) Prove without using calculator that cos 20° cos 40° cos

$$60^{\circ} \cos 80^{\circ} = \frac{1}{16}$$

- 9.(a) The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$.

 Prove that the greatest angle of the triangle is 120° .
- **(b)** Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$

	Mathematics	Inter Part I (2018) Lahore Board	Group - I
~	Time:30 Min.	Objective Type	Marks: 20

Four possible answers A, B, C and D to each question Note: are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

- 1.1 If α , β , γ are angles of triangle then tan $(\alpha + \beta) + \tan \gamma = 1$
 - (A) 1

(B) 0

(C) 2

- (D) -1
- If A and B are mutually exclusive events, then $P(A \cup B)$: 2
 - (A) $P(A) \cup P(B)$ (B) P(A) + P(B)

 - (C) $P(A \cap B)$ (D) P(A) P(B)
- The value of $\cos(\tan^{-1}0) = 1$
 - (A) -1

(B) 1

(C) 0

- (D) ∞
- If $\sin \theta < 0$ and $\cot \theta > 0$, then θ lies in quadrant :
 - (A) 1

(B)2

(C) 3

- (D) 4
- If $\cos x = -\frac{1}{2}$ then reference angle is:
 - $(A) \frac{\pi}{6}$

(B) $-\frac{\pi}{3}$

(C) $\frac{\pi}{3}$

- (D) $\frac{\pi}{2}$
- $4^n > 3^n + 4$ is true for integral values of $n = 3^n + 4$
 - (A) 1

(B) $n \le 1$

(C)0

- (D) $n \ge 2$
- The value escribed circle $r_1 = :$
 - 111

(C)
$$\frac{\Delta}{s}$$

 $(D)\frac{\Delta}{a}$

Period of $\cos\left(\frac{x}{2}\right) = :$

$$(A) 2\pi$$

(B)
$$\frac{\pi}{2}$$

(C)
$$3\pi$$

(D) 4π

9 The 2nd term in expansion of $\left(1 - \frac{1}{3}x\right)^{-1}$ is:

(A)
$$\frac{1}{3}$$
 x

(B)
$$-\frac{1}{3}x$$

(D) 2x

(C) 3x (D) 2x

10 Radius of escribed circle opposite to vertex 'c' of the triangle is:

(A)
$$\frac{\Delta}{s}$$

(B)
$$\frac{\Delta}{s-a}$$

(C)
$$\frac{\Delta}{s-c}$$

(D)
$$\frac{\Delta}{s-b}$$

Product of all fourth roots of unity is:

(A) -1

(B) 0

(C) 1

(D) i

12 The set {0, 1} is closed under:

- (A) Addition
- (B) Multiplication
- (C) Division
- (D) Subtraction

13 The value of $\frac{4!}{0!}$ is:

(A) 24

(B)4

1010

(D) Infinity

10	10	12/	
1	, -	, ,	

- A square matrix A is skew symmetric if A¹ = :
 - (A) A

(B) A

 $(C) \overline{A}$

- (D) A1
- Geometric mean between -2 and 8 is :
 - (A) 4

(B) ± 4

(C) 8

- (D) $\pm 4i$
- Sum of roots of quadratic equation $ax^2 + bx + c = 0$ is :
 - $(A) \frac{a}{b}$

 $(B) \frac{b}{-}$

(C) $\frac{c}{c}$

- $(D) \frac{b}{a}$
- 17 The 10th term of $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$, --- is:

(B) 28

- (D) $\frac{1}{32}$
- 18 If A and B are two sets, then A B
 - (A) $A \cup B^c$

(B) $(A \cup B)^c$

(C) A ∩ B°

- (D) $(A \cap B)^c$
- The fraction $\frac{3x^2+5}{x+1}$ is:
 - (A) Proper fraction (B) Polynomial

 - (C) Partial fraction (D) 1mproper fraction
- If order of a matrix A is $m \times n$, then order of A^t is :
 - $(A) m \times n$

 $(B) m \times m$

 $(C) n \times m$

(D) $n \times n$

Mathematics	Inter Part I (2018) Lahore Board	Group – I
Time:2.30 hrs	Essay Type	Marks: 80

SECTION-I

Write short answers to any EIGHT (8) questions: 16

Simplify (-1)⁻²¹

Express the complex number $(1 + i\sqrt{3})$ in polar form.

iii Find the multiplicative inverse of (-4, 7)

iv Is there any set which has no proper subset? If so name that set.

Write the converse and contrapositive of ~ q → ~ p
For A = {1, 2, 3, 4}, find the relation in A for R = {(x, y) | x + y < 5 }, also write the range of R.

vii If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$, $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b.

Find the multiplicative inverse of the matrix $\begin{bmatrix} 2i & i \\ i & -i \end{bmatrix}$

Show that $\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ x & y & z & | x & y & z \\ yz & zx & xy & | x^2 & y^2 & z^2 \end{vmatrix}$

Solve the equation $x^4 - 6x^2 + 8 = 0$

Show that $x^3 - y^3 = (x - y)(x - \omega y)(x - \omega^2 y)$, ω is complex cube root of unity.

xii If α , β are the roots of $3x^2 - 2x + 4 = 0$, then find the value

 $\int_{\alpha}^{\beta} \frac{1}{\alpha^3} + \frac{1}{\beta^3}$

Write short answers to any FIGHT (8) questions: 16

,3/16/2019

iv

Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into partial fractions.

If $a_{n-2} = 3n - 11$, find the nth term of the sequence

If 5, 8 are two A.Ms between a and b, find a and b iii

Which term of the A.P. 5, 2, -1,---- is - 85?

Insert two G.Ms between 1 and 8.

If 5 is the harmonic mean between 2 and b, find b Vi

vii Define fundamental principle of counting.

viii Find the number of the diagonals of a 6-sided figure.

What is probability that a slip of numbers divisible by 4 are picked from the slips bearing number 1, 2, 3,.....10?

State the principle of mathematical induction.

If x is so small that its square and higher powers can be xi

neglected, then show that $\frac{1-x}{\sqrt{1+x}} = 1 - \frac{3}{2}x$

xiii Find the 6th term in the expansion of $\left(x^2 - \frac{3}{2x}\right)^{10}$

Write short answers to any NINE (9) questions: 18 4. An arc subtends an angle of 70° at the center of a circle and its length is 132 m. Find the radius of the circle.

Define coterminal angles.

iii Verify $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4} = 2$

If α , β , γ are angles of a triangle $\triangle ABC$, then prove that $tan (\alpha + \beta) + tan \gamma = 0$

Find the value of sin 105°, without calculator.

Prove that $\cot \alpha - \tan \alpha = 2 \cot 2\alpha$

vii Write the domain of $y = \sin x$

viii A vertical pole is 8m high and the length of its shadow is 6m. What is the angle of elevation of the sun at that moment?

- Find α and β in the triangle \triangle ABC in which a = 7, b = 7, c = 9
- Find the area of the triangle $\triangle ABC$ in which a = 200, b = $120 \, , \gamma = 150^{\circ}$
- Evaluate without using calculator $tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$
- **xii** Solve the equation $2\sin x 1 = 0$
- xiii Find the solution of the equation which lie in interval [0, $2\pi 1$: sec x = -2

SECTION-II

- Attempt any THREE questions. Note:
- 5.(a) Consider the set $S = \{1, -1, i, -i\}$. Set up its multiplication table and show that the set S is an abelian group under multiplication. 5
- If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ then find A^{-1} by using adjoint of the (b)
- matrix. 5 Solve the system of equations : x+y = a+b; 6.(a) $\frac{a}{-+-} = 2$
- Resolve $\frac{9x-7}{(x^2+1)(x+3)}$ into partial fractions. (b) 5
- 7.(a) Find four numbers in arithmetic sequence (A.P.) whose sum is 32 and the sum of whose squares is 276. 5
- (b) Use binomial series to show that . 5 $1 + \frac{1}{4} + \frac{1 \times 3}{4 \times 8} + \frac{1 \times 3 \times 5}{4 \times 8 \times 12} + - - = \sqrt{2}$
- If cosec $\theta = \frac{m^2 + 1}{n}$ and $m > 0 \left(0 < \theta < \frac{\pi}{n} \right)$, find the

5

- values of the all remaining trigonometric ratios.
- (b) Prove that $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$ without using calculator
- 9.(a) With usual notations, prove that $r_1 = \frac{\Delta}{s}$
- (b) Prove that $\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \sin^{-1}\frac{77}{85}$