-	
aper	Code

Roll No.

•	217	6
Number	241	\mathbf{O}

2018 (A) Rol INTERMEDIATE PART-I (11th CLASS)

Mumber		350		
PHYSI	ICS PAPER-	GROUP-II (NE	W SCHEME) OBJECTIVE	MAXIMUM MARKS: 17
	ALLOWED: 20	. c . l biontiv	a type question as A. B. C. an	d D. The choice which you
			nper and leave others blank. Lestions on this sheet of OBJE	
Q.No.1 (1)	When a body is in	n circular motion, the a	ngle between linear and angula	r velocity is:-
	(A) 180°	(B) 90°	(C) 45°	(D) 0°
(2)	The linear velocit	ty of a disc when it rea	ches the bottom of an inclined	plane of height 'h' is:-
	(A) \sqrt{gh}	(B) $\sqrt{\frac{4}{3}}gh$	(C) $\sqrt{\frac{2}{3}}gh$	(D) $\sqrt{\frac{1}{3}}gh$
(3)	The term $\frac{1}{\rho} v^2$	in Bernoulli's equation	has the same unit as:-	
(5)	(A) Work	(B) Volume	(C) Pressure	(D) Force
(4)	If 20 would per se		edium at a speed of 30 ms ⁻¹ , th	en the wavelength is:-
(4)		(B) 15 m	(C) 1 m	(D) 28 m
	(A) 30 m			
(5)	Radar system is a		(C) Stationary waves	(D) Doppler's effect
	(A) Interference	nechanical waves is:-		
(6)			(C) Infrared waves	(D) Ultraviolet waves
	(A) Water wav	es (B) Radio waves om air to glass does no		
(7)		(B) Wavelength	(C) Velocity	(D) Direction
	(A) Frequency	formed by a simple mi		
(8)	The final image	inverted (B) Virtual	and erect (C) Real and erect	(D) Real and inverted
			rough an optical fibre.	
(9)			ht (C) Infrared light	(D) White light
			(0) 2333	
(10	The unit of entr	(B) K_I	(C) J/K^2	(D) J/K
(1.1	(A) J A	operates between the to	emperatures 1000 k and 400 k.	Its efficiency can be equal to.
(11		(B) 60 %	(C) 70 %	(D) 100 %
41.0	(A) 50 %			
(12	2) One light year	(D) 0.6 × 10 ¹⁵ m	(C) $9.5 \times 10^{-15} m$	(D) $9.6 \times 10^{-16} m$
	(A) 9.5 × 10	m (B) 3.0 × 10 m	4.10 and 1.273 up to the correct	ct decimal place is:-
(13			(C) 8.1273	(D) 8.127
	(A) 8.12	(B) 8.13 →		
(14	4) The cross pr	oduct of a vector A v	with itself results:-	λ.
	$(A) \stackrel{\rightarrow}{A}$	(B) A ²	(C) Zero	(D) Null vector
(1	5) A force of 10	N makes an angle of 3	30° with $y - axis$. The magnit	ude of x – component will be:-
(1	J) A TOLOGO OF TO			

(D) Zero (C) 10 N (B) 8.66 N

A force of 10 N acts on a body of mass 5 kg for one second. The change in its momentum will be:-(16)

(D) 20 kgms⁻¹ (B) $50 \, kgms^{-1}$ (C) $2 kgms^{-1}$ (A) 10 kgms⁻¹

____ is the biofuel. (17)(B) Petrol (A) Water

(C) Ethanol 18(Obj)(1 1 1 1 - 2018(A)-16000 (MULTAN)

(D) Oil

	9		-
Pa	per	Code	

Roll No.

17

2018 (A) Rollintermediate part-i (11th Class)

	· · · · · · · · · · · · · · · · · · ·			
		OUP-I (NEW SCHEM)	,	
	ALLOWED: 20 Minut			IMUM MARKS: 17
think is Cutting questio	s correct, fill that bubble i g or filling two or more bu ons as given in objective ty UBBLES are not filled. D	r each objective type question in front of that question num abbles will result in zero mar pe question paper and leave to not solve questions on this	ber. Use marker or p k in that question. At others blank. No cre	en to fill the bubbles. tempt as many dit will be awarded in
(1)		a physical picture of how the	:- (A) Body	moves
	(B) Gravity works	(C) Moment of inertia prod	uced (D) Weightle	essness creates
(2)	The dimensions of ρgh	has same as that of:-		
	(A) Work	(B) Energy	(C) Pressure	(D) Mass
(3)	Time period of simple per	adulum only depends on its:-		
	(A) Mass	(B) Amplitude	(C) Density	(D) Length
(4)	When an observer is movi relative velocity of the wa	ng away from the source with aves and the observer is:-	velocity U_0 from a sta	tionary source then
	(A) $V + U_0$	(B) $V - U_0$	(C) $\frac{V + U_0}{2}$	(D) Zero
(5)	is correct relation.		2	
(6)	(A) $\frac{v_t}{v_0} = \frac{\rho_0}{\rho_t}$ A ray of light shows the	(B) $\frac{v_t}{v_0} = \frac{\rho_t}{\rho_0}$ direction of propagation of lig	(C) $\frac{v_t}{v_0} = \sqrt{\frac{\rho_t}{\rho_0}}$	0 4 1-1
(-)	(A) Normal to the wave	front (B) Parallel to wave fint (D) Equal to wave f	front	
(7)	Light waves are:-			
		(B) Transverse waves (C)	1 NO. 1	
(8)	The magnification of a co	onvex lens of focal length 5 cm	is equal to:- (A) $\frac{1}{5}$	(B) 5 (C) 6 (D) 25
(9)	In adiabatic process the fit (A) $W = -\Delta U$	rst law of thermodynamics be (B) $W = Q$	comes:- (C) $Q = \Delta U$	(D) $W = -Q$
(10)	The change in entropy Δ	s is equal to:-		
	(A) $\frac{\Delta Q}{\Delta T}$	(B) $\frac{\Delta Q}{T}$	(C) $\frac{\Delta T}{\Delta Q}$	(D) $\frac{T}{\Delta Q}$
(11)		famous equation $E = mc^2$, the		
	(A) 3×10^8 joule		(C) 4×10^{16} joule	5 15 1
(12) (13)		at figures in 0.00232 are:-	(A) 6 (B) 5	(C) 3 (D) 4
(13)	of \vec{R} along x – axis will	nd R_y of resultant vector R a	re negative then angle	O
	(A) $\theta = 270^{\circ}$	(B) $180^{\circ} < \theta < 270^{\circ}$	(C) $180^{\circ} > \theta > 270$	° (D) $\theta \le 270^{\circ}$
(14)	The magnitude of \hat{A} will		(B) A^2 (C) 1	
(15)	If the initial velocity of a	projectile becomes doubled.	The time of flight will	become:-
	(A) Double	(B) Same	(C) 3 times	(D) 4 times
(16)	For freely falling body, in	the presence of force of friction	on the:-	
	(A) Loss in P.E. = gain in(C) Loss in P.E. > gain in	. ,	ain in K.E.	
(17)	The ratio of moment of in	ertia of hoop to the moment of	f inertia of disc (if their	masses and

(A) 2

radii are same) is equal to:-