and the second		5	Roll	No	Ánnual 20	Ì'8
Mathematics (INTERMEDIATE PA	RT – I, Class 11 th) - (I)		Paper : I	
Time: 30 Minutes	Objective	Code: 6191			Aarks : 20	
Note: You have four ch	oices for each objective	type question as A,	B, C and D. Tl	he choice w	hich	
you think is corre	ect, fill that circle in from	t of that question nu	mber. Use mar	ker or pen t	o mi the	
	or filling two or more cire		ro mark in that	question.		
1. i. If $(x+iy)^2 = a + a + a + a + a + a + a + a + a + a$	ib then $x^2 - y^2$ equals:		/-		. 1.	
	² (B) $a^2 - b^2$		a-b (1	(D) $(a - b)$	FD	
ii. If 'p' is a logical	l statement, then $p \wedge \neg$				litional	
(A) absurdit			utology (I	D) cond	litional	
	e matrix and $A' = A$, the					
(A) hermitian m	natrix (B) skew hermiti	ian matrix (C) syn	metric matrix	(D) skew s	ymmetric matrix	
iv. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 5 \end{bmatrix}$	$ \begin{array}{c} 3x \\ 6x \\ 9x \end{array} $ then $ A $ is equal to	o:				
(A) 1	(B) 3	(C)	2	(D)	0	
	cube roots of unity equal	s:				
(A) 1	(B) a	v (C)	0	(D)	ω^2	
vi. If 'x-2' is a factor	actor of polynomial x^3	$+2x^2+kx+4$ then	k equals :			
(A) 10			2	(D)	4	
vii. $\frac{A}{x-1} + \frac{B}{x+1}$ is	a partial fraction form of	f the proper fraction				
(A) $\frac{1}{x^2-1}$	(B) $\frac{1}{x^3}$	$\frac{1}{3-1}$ (C)	$\frac{1}{x^2+1}$	(D)	$\frac{1}{x^3 + 1}$	
viii. Sum of n - arit	hmetic means between a	and b is equal to :	:			
	b (B) n((D)	$n(\frac{a+b}{2})$	
ix. If 1/a , 1/b a	and 1/c are in G.P then	common ratio is eq	ual to:			
(A) $\pm \sqrt{\frac{4}{6}}$	$\frac{c}{a}$ (B) $\pm $	$\left[\frac{a}{c}\right]$ (C)	$\pm \sqrt{a+c}$	(D)	$\pm \sqrt{a-c}$	
X. $\frac{n!}{(n-r)!}$ is alw	vays equal to					
(A) ^{<i>n</i>} <i>p</i> _{<i>r</i>}	(B)	<i>"c_r</i> (C)	$^{r}p_{n}$	(D)	r _C	
xi. A coin is tosse	ed twice then probability	of getting all heads	equal:			
(A) 1/2		1/3 (C)	1/4	(D)	2/3	
(11) 112		(Turn C	Over)			

ļ,

and see

ь. ь.	• 			Roll	No	Ann	ual 2018	
Dislorri (New Scheme)	(INTERN	IEDIATE PA	RT-I) (I	II)		Paper : I	
Time: 20 M	Tinutes .	Academ	ic Session 201	7 - 2019		I	Marks : 17	
Time: 20 h	CAY		OBJECTIV	C				
	Ser.	Ť	Code: 6465	<u>i</u>				
Note: Yo	ou have four choices for	each objectiv	ve type questio	n as A, B,	C and D. The choic	e which		
	w think is correct fill the	at circle in fro	ont of that que	stion numb	er. Use marker of p	ch to m	l the	
yu	rcles. Cutting or filling	two or more of	circles will res	ult in zero	mark in that question	n.		
	monoecious plant is that							
1- i. A	() male and female se	x organs on	same plant	(B) male	and female sex or		different plant	IS
		male sex org		(D)	only has female set	x organ		
(C	[ammals have only:							
		(B) left arc	otic arch (C)	both left	and right arotic arc	hes (D)	no arotic arch	
	 right arotic arch he largest invertebrate is 							
		(B)	star fish	(C)	giant squid	(D)	ascarus	
	 earth warm yruvic acid is produced 		of					
		(B) cit	ric acid cyle	(C)	respiratory chain	(D)	glycolysis	
(4	A) krebs cycle Accumulation of bile in b							
			ulcer	(C)	jaundice .	(D)	piles	
	A) constipation First action spectrum wa		V					
	A) T.W. Engelmann	(B)	Van neil	(C)	Malvin Calvin	(D)	Ernst Haeckel	
	Respiratory organs in fis							
	en e	(B)	gills	(C)	skin	(D)	Fins	
	(A) lungs Water potential of pure v							
	(A) less than zero	(B) mo	ore than zero	(C)	equal to zero	(D)	equal to one	
	The open circulatory sy		ent in			`		
	(A) periplaneta		pheretima	(C)	Rana tigrina	(D)	Amphioxus	
	The most recent era is							(Real)
	(A) Paleozoic	(B)	Cenozoic	(C)	Mesozoic	(D)	Protozoic	
	Chemical nature of mo		ecretions is				~ ~ ~ .	
	(A) proteins	(B)	lipids	(C)	carbohydrates	(D)	glycoproteir	15
	If protein part of co-fac		tly bonded to	enzyme, it	is called as			
	(A) co-enzyme	(B) pro	osthetic group	(C)	activator	(D)	apoenzyme	
	Proteins are synthesized							
АШ.	(A) polysome		ucleosome	(C)	lysosome	(D)	ribosome	
viv	Which one is an insect							
A1V.	(A) Hag fish	(B)	Cuttle fish	(C)	Silver fish	(D)	Star fish	
1/1/	Which one is microaer		rium?					
	(A) campylobacter	(B)	spirochet	(C)	mycoplasma	(D)	vibrio Comma	a
	Conjugation in bacteria		by the structu	re:				
XVI.	(A) Flagella	(B)	Pili	(C)	Cillia	(D)	Spores	
	. Saccharomyces cerevi							
XVII	(A) Yeast	(B)	Algae	(C)	Bacterium	(D)	Protozone	
	(11)		.1942					

215-318-15000 ***

Biology (New Scheme) Time : 2 : 40 Hours

SUBJECTIVE

(INTERMEDIATE PART - I)

Academic Session 2017 - 2019

Note :- Section I is compulsory. Attempt-any three (3) questions from Section II.

(Section - I)

2. Write short answers to any Eight Parts.

- i. What is the difference between deductive reasoning and inductive reasoning?
- il. What is hydroponic culture technique?
- iii. What are obligate intracellular parasites?
 - iv. What is lock and key model? Who proposed it?
 - v. Define co-factor. What is its function?
 - vi. Differentiate between activator and coenzyme.
 - vii. Name three sub classes of mammalia.
- viii. Give beneficial effects of insects.
 - ix. Give some uses of shells of mollusca.
 - x. Define metamorphosis.
 - xi. What is histoplasmosis?
 - xii. Differentiate between conidia and spores.
- 3. Write short answers to any Eight parts.
 - i. Differentiate between spore and cyst.
 - ii. Write two main characteristics of ciliates.
 - iii. Write two characters of giant amoeba.
 - iv. Give the ecological importance of dinoflagellates.
 - v. What are foraminiferans? Give their importance.
 - vi. Name living and extinct representatives of psilopsida.
 - vii. What are accessory pigments? Give two examples.
 - viii. Differentiate between essential and non essential parts of a flower.
 - ix. What is Rubisco? Write down its function.
 - x. Differentiate between bolus and chyme.
 - xi. Give the composition of saliva.

4.

xii. What is botulism? Give its cause.

Write short answers to any Six parts.

- i. What are conjugated molecules? Give example.
- ii. Write down functions of SER.
- iii. Write down salient features of "Cell Theory".
- iv. What is photorespiration? Give its products.
- v. What is respiratory distress syndrome?
- vi. Write down properties of respiratory surfaces in animals.

(Turn Over)

 $(8 \times 2 = 16)$

 $(8 \times 2 = 16)$

 $(6 \times 2 = 12)$

Marks: 68

NO. 08	GODHA OARD ERST GEDUP C ANNUAL 2018
N_H N. 智慧制整器	
	(To be filled in by the candidate)
	JECTIVE TYPE) Time Allowed : 30 Minute
NDTE:Four possible answers A, B, C and correct, till that circle in front of th more circles will result in zero mark	D to each question are given. The choice which you think in that question with Marker or Pen ink. Cutting or filling two of in that question.
Q1.	
1. The number π is	
(A) Whole number	(B) A natural number
(C) A rational number	(D) An irrational number
2. If every element of a set A is also an	element of set B, then
$(A) A \subseteq B$	(B) B ⊆ A
(C) $A \cap B = \phi$	(D) A ∩ B = B
3. If the matrices $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ then	A', the transpose of A is
1 4	and the second
(A) $\begin{vmatrix} 2 & 3 \\ 3 & 6 \end{vmatrix}$	(B) 5 6
(C) $\begin{vmatrix} \hat{5} & \hat{6} \end{vmatrix}$	(D) 4 6
L'. J	
4. If the determinant $\begin{vmatrix} k \\ 4 \end{vmatrix} = 0$ then	k is equal to.
(A) 16 (B) 0	(C) ±4 (D) 8
5. A quadratic equation has degree.	
(A) 0	L'ALLET
(C) 2	(D) 3
6. The roots of the quation $x^3 + x = 6$:	
(A) Real (B) Equal	(C) Complex (D) Irrational
(A) Real (B) Equal	

1/3

Mathematics Intermediate Part-

- (ix) A box contains 10 red, 30 white and 20 black marbles. A marble is drawn at random. Find the probability that it is either red or white.
- (x) Show that the formula is true for $n = 1, 2, T^2 + 3^2 + 5^2 + ... + (2n 1)^2 = n^2 (2n^2 1)$
- (xi) Using Binomial theorem expand $(9.9)^5$.
- (xii) Expand upto 4 terms, taking the value of x such that the expansion is valid $(4 3\chi)^{\frac{1}{2}}$

24. Attempt any nine parts.

- Express the angle 75° 6' 30" in radian measure. (1)
- (ii) In rightangled triangle $\triangle ABC$ Prove that $\cos^2\theta + \sin^2\theta = 1$.
- (iii) If $\cot \theta = \frac{15}{\Re}$ and terminal arm of angle is not in 1st quadrant then find the value of $\cos \theta$ and cosec0.
- (iv) Prove that $\cos 306^\circ + \cos 234^\circ + \cos 162^\circ + \cos 18^\circ = 0$

$$\cot \alpha \cot \beta + 1$$

- (v) Show that $\cot(\alpha \beta) = \frac{1}{\cot\beta \cot\alpha}$
- (vi) Show that $\frac{1 \cos \alpha}{\sin \alpha} = \tan \frac{1}{2}$
- (vii) Find the period of cosec10x
- (viii) A ladder leaning against a vertical wall making an angle of 24° with the wall. If its foot is 5cm from the wall then find the length of ladder.

unvalcor

- (ix)' Solve the triangle $\triangle ABC$ if $\alpha = 53$, $\beta = 88^{\circ} 36'$ and $\gamma = 31^{\circ} 56'$.
- (x) Find the smallest angle of triangle $\triangle ABC$ if sides of triangle are a = 37.34, b = 3.24, c = 35.06

(xi) Show that
$$\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left(\frac{A+B}{1-AB}\right)$$

- (xii) Find the solutions of $\cot \theta = \frac{1}{\sqrt{3}}$ if $q \in (0, 2\pi)$.
- (xiii) Solve the equation $\sin^2 x + \cos x = 1$.

Note: Attempt any THREE questions.

Q5. (a) Show that the set {1, ω , ω^2 }, When $\omega^3 = 1$, is an Abelian group w.r.t. ordinary multiplication. 5

Without expansion, show that: $\begin{array}{c} x & b+x & c+a = 0 \\ -x & c+x & a+b \end{array}$ (b)

If a, b are the roots of equation $5x^2 - x - 2 = 0$, form the equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$ 5 Q6. (a) (b) Split the given Rational Fraction into Partial Fractions $\frac{3x^2 - 4x - 5}{(x - 2)(x^2 + 7x + 3x)^2}$ 5

2/3

5

(18)

3/16/2019

Q7. (a) Find n So that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the A.M (arithmetic Mean) between a and b.

- (b) Find the term independent of x in the expansion of $\sqrt{x} + \frac{1}{2x^2}$
- 08. (a) Prove that $\frac{\tan\theta + \sec\theta 1}{\tan\theta \sec\theta + 1} = \tan\theta + \sec\theta$.
 - (b) If $\alpha + \beta + \gamma = 180^{\circ}$, prove that $\cot \alpha$. $\cot \beta + \cot \beta$. $\cot \gamma + \cot \alpha$. $\cot \gamma = 1$
- Q9. (a) Find the area of the triangle $\triangle ABC$ in which c = 32, $\alpha = 47^{\circ} 24^{\circ}$, $\beta = 70^{\circ} 16^{\circ}$
 - (b) Without using calculator prove that $\sin^{-1}\frac{77}{85} \sin^{-1}\frac{3}{5} = \cos^{-1}\frac{15}{17}$

5

5

5

5

3/16/2019

3/	-7	F.	12	n	1	0
.11	. 4	1.1	-	v		5

(A)+8

(C) 31/21

ţ	D	J	ч	

(D) 9%

•	(C) -8	(D) -4	
9.	Let A, G, H be arithmetic, geom then $G^2 =$	etric and harmonic means between "a" & "b" respectively	
	(A) A the	(B) √ab	JANAN''
	(C) M	(D) A H	
10.	9 × 8 × 7 is equal to		
	(A) 9!	(B) $\frac{9!}{7!}$	

11. The probability that a slip of numbers is divisible by "4", picked from the slips bearing the numbers 1, 2, 3,, 10 is

(A) 1/5	(B) ⁵ / ₂
$(C) \frac{2}{5}$.	(D) -1/5
12. $n^2 > n + 3$ holds for all integral va	lues of
(A) n≤3	lues of
(C) n ≤ 2	I J IDIm 22
13. The Expansion of $(8 - 2x)^{-1}$ is value	1 H S
	(B) [N] < 4
(A) x > 4 (C) $(s) = 0$	(D) N = 4
14. The central angle of an arc of a circ	te whose length is equal to the radius of the circle is called the
(A) degree	(B) radian
(C) minute	(D) second
15. $\sin(\frac{\pi}{2}-0) =$	
(A) Cos θ	(B) $\sin \theta$
(C) -Cos 0	(D) -Sin 0
16. The period of 2 cos x is	
(A) [#] / ₂	(B) 4π ~
(C) π (t	(D) 2π
17. In any right angled triangle no an	gle is greater than
(A) 90°	(B) 80°
(C) 60°	(D) 45°
18. Radius of inscribed circle is	
(A) $r = \frac{\Delta}{5}$	(B) $r = \frac{abc}{4\Delta}$