

(B) $(\pm 5,0)$

(C) $(\pm 4,0)$

(D) $(0, \pm 4)$

11) If " α " is the direction angle of a vector, then

(A)
$$0 < \alpha < \pi$$

(B) $0 \le \alpha \le \pi$

(C) $0 < \alpha \le \pi$

(D) $0 \le \alpha < \pi$

12) If a and \underline{b} are two non zero vectors then angle between \underline{a} and $\underline{a} \times \underline{b}$ is always

(B) 30°

(C) 90°

(D) 60°

$$13) \int \frac{1+x}{x} \cdot dx =$$

(A) $\log_{c} |x| + c$

(B) $1 + \log_e |x| + c$ (C) $\log_e |1 + x| + c$ (D) $x + \log_e |x| + c$

14) Distance of a point P(x,y) from x-axis is

(B) y

(C) |x|

(D) |y|

15) Centroid of the triangle with vertices A(2, 1), B(-1, 3), C(-1, -4) is

(B)(0,0)

(C)(2,2)

(D) (-2, -5)

16) The line ax + by + c = 0 is parallel to y-axis if

$$(\Lambda) c = 0$$

(B)
$$a = 0$$

$$(C) a = b$$

(D)
$$b = 0$$

17) Equation of a line passing through (-2, 5) having slope O is

(A)
$$y = -5$$

(B)
$$y = 5$$

(C)
$$x = -2$$

(D)
$$x = 2$$

18) x = 0 is not in the solution of inequality

(A)
$$2x + 3 > 0$$

(B)
$$x + 4 > 0$$

(C)
$$x + 5 > 0$$

(D)
$$2x + 3 < 0$$

19) Length of the diameter of the Circle $(x-5)^2 + (y-3)^2 = 8$ is

(C)
$$2\sqrt{2}$$

(D)
$$4\sqrt{2}$$

20) The line y = mx + c will be tangent to the circle $x^2 + y^2 = a^2$ if

(A)
$$c = \frac{a}{m}$$

(B)
$$c = \pm a\sqrt{1 - m^2}$$

(C)
$$c = \pm a\sqrt{1 + m^2}$$

(B)
$$c = \pm a\sqrt{1 - m^2}$$
 (C) $c = \pm a\sqrt{1 + m^2}$ (D) $c = \pm a\sqrt{m^2 - 1}$

1235 -- 1218 -- 15000 **(3)**

- 4. Answer briefly any Nine parts from the followings:-
- (i) Show that the points A(-1,2), B(7,5) and C(2,-6) are vertices of a right triangle.
- (ii) Find the points trisecting the join of A(-1, 4) and B(6, 2)
- (iii) Find equation of the perpendicular bisector of the segment joining the points A(3,5), and B(9,8)
- (iv) Show that lines 3x 4y 3 = 0 5x + 12y + 1 = 0, 32x + 4y 17 = 0 are concurrent.
- (v) Find the distance from the point (6, -1) to the line 6x 4y + 9 = 0
- (vi) Find focus and vertex of the parabola $y^2 = 8x$
- (vii) Find equation of parabola with focus (-3,1) and directrix x = 3
- (viii) Find foci and eccentricity of the ellipse $9x^2 + y^2 = 18$
- (ix) Find equation of the ellipse with vertices $(0,\pm 5)$ and eccentricity $\frac{3}{5}$
- (x) Find " α " so that $|\alpha \underline{i} + (\alpha + 1)\underline{j} + 2\underline{k}| = 3$
- (xi) Find the direction cosines for the vector $\underline{v} = 3\underline{i} \underline{j} + 2\underline{k}$
- (xii) Find real number " α " so that vectors $\underline{u} = 2\alpha \underline{i} + \underline{j} \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 4\underline{k}$ are perpendicular
- (xiii) Find the volume of parallelepiped determined by $\underline{u} = \underline{i} + 2\underline{j} \underline{k}$, $\underline{v} = \underline{i} 2\underline{j} + 3\underline{k}$, $\underline{w} = \underline{i} 7\underline{j} 4\underline{k}$

Section ----- II

Note: Attempt any three questions.

 $(10 \times 3 = 30)$

- 5-(a) Discuss the continuity of function f(x) at x = 3 if $f(x) = \begin{cases} \frac{x^2 9}{x 3} & \text{if } x \neq 3 \\ 6 & \text{if } x = 3 \end{cases}$
 - (b) If $y = a \cos(\ln x) + b \sin(\ln x)$ prove that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$
- 6-(a) Evaluate the indefinite integral using partial fraction $\int \frac{1}{6x^2 + 5x 4} dx$
 - (b) Find the area of region bounded by $10x^2 xy 21y^2 = 0$ and x + y + 1 = 0
- 7 -(a) Evaluate the integral $\int_{0}^{\pi/4} \frac{\cos\theta + \sin\theta}{2\cos^2\theta} d\theta$
 - (b) Maximize f(x,y) = x + 3y subject to the constraints $2x + 5y \le 30$; $5x + 4y \le 20$; $x \ge 0$; $y \ge 0$
- 8 -(a) Write an equation of circle that passes through A(4,5), B(-4,-3), C(8,-3)
 - (b) Prove that the line segments joining the mid points of the sides of a quadrilateral taken in order form a parallelogram.
- 9 -(a) Find the centre, foci eccentricity and equations of directrices of the Hyperbola $\frac{x^2}{4} \frac{y^2}{9} = 1$
 - (b) Find a unit vector perpendicular to the plane containing vectors $\underline{a} = 2\underline{i} 2\underline{j} + 4\underline{k}$ and $\underline{b} = -\underline{i} + \underline{j} 2\underline{k}$ also find the "Sine" of the angle between them.