

Mathematics		2 L.K.No. 1117 /	Paper Code No. 6195
	(Objective Type)	THECT	Session (2015 -17) to (2018 - 20)
Paper I Time :	30 Minutes	Inter (Part - I)	4
Marks :	20		and the choice is correct fill that

Note: Four possible choices A, B, C,D to each question are given. Which choice is correct fill that circle in front of that Question No. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

2	circles will result in Zero Walk III that Que
	The matrix [a b c d] is : (A) Square (B) Unit (C) Null (D) Row
Q.No.1 (1)	The matrix [a b c a]
(2)	If $A = \{a, \{a, b\}\}\$, then number of elements in P(A) is : (A) 2 (B) 3 (C) 4 (D) 8
(3)	The property used in $(a+1) + \frac{3}{4} = a + (1 + \frac{3}{4})$ is :
(-)	(A) Closure (B) Associative (5)
(4)	If Order of $X = 3 \times 2$ and that of $A = 2 \times 2$ then order of $XA = 2 \times 3$ (C) 2×3 (D) 3×3
()	(A) 3 x 2 (B) 2 x 3 (C) 2 x 5 (C)
(5)	In $\frac{P(x)}{Q(x)}$, if degree of $P(x) \ge$ degree of $Q(x)$, then fraction is:
	(A) Proper (B) Improper (c)
(6)	When $x^3 - 2x^2 + 3x + 3$ is divided by $x - 3$, the remainder is : (A) -21 (B) 22 (C) -51 (D) 51
	An equation which remains unchanged when x is replaced by $\frac{1}{x}$ is:
(7)	An equation which remains unchanged (A) Exponential (B) Radical (C) Reducible (D) Reciprocal
	(A) Exponential (B) Radical (C) Research
(8)	If $a_n = \frac{(-1)^{n+1}}{2^n}$, then $a_5 = :$ (A) $\frac{1}{8}$ (B) $\frac{1}{16}$ (C) $\frac{1}{32}$ (D) $\frac{1}{64}$
(9)	hat is the probability to get 3 dots:
(3)	A die is thrown, what is the probability (A) $\frac{1}{3}$ (B) $\frac{1}{6}$ (C) $\frac{2}{3}$ (D) $\frac{5}{6}$
(10)	$\frac{8!}{8!} = \frac{(A) \ 7! \ (B) \ 7 \ (C) \ 8 \ (D) \ 8!}{(B) \ 7! \ (B) \ 7 \ (C) \ 8 \ (D) \ 8!}$
(11)	7! If H is H.M. between "a" and "b" then H = : (A) $\frac{2ab}{a+b}$ (B) $\frac{a+b}{2ab}$ (C) $\frac{a+b}{2}$ (D) $\pm \sqrt{ab}$
	k ak a is true for :
(12)	(A) K 2 (B) K = 2 (5)
(4.2)	$\langle A \rangle Sin\Theta \langle B \rangle - Cos\Theta \langle C \rangle Cos\Theta \langle D \rangle - Sin\Theta$
(13) (14)	97 I decree measure is :
-	Total number of terms in expansion of $\left(\frac{x}{2} - \frac{2}{x^2}\right)^{16}$ are : (A) 17 (B) 16 (C) 15 (D) 14
(15)	Total number of terms in expansion of (2 x2) (A) 17 (B) 16 (C) 15 (D) 14
	(A) Λ (B) $-\Lambda$ (C) 2Λ (D) -2Λ
(16)	/ 1 /0/ 1 /// () ())
(17)	Sin (Tan $/0$) = :
(18)	(A) $\frac{-}{s}$ (B) $\frac{-}{s-a}$ (C) $\frac{-}{s-b}$ (C) $\frac{-}{s-c}$
140	· · · · · · · · · · · · · · · · · · ·
(19	The angle above the Horizontal Line is called all angle of the Allied (D) Quadrental (A) Depression (B) Elevation (C) Allied (D) Quadrental $\frac{\pi}{2}$ (D) $\frac{\pi}{2}$ (D) $\frac{\pi}{2}$
(20	The reference angle for $Tan\Theta = \sqrt{3}$ is : (A) $\frac{\pi}{6}$ (B) $\frac{-\pi}{6}$ (C) $\frac{\pi}{3}$ (D) $\frac{-\pi}{3}$

Roll No. 2 # 2	1117 - 30000	Session (2015 -17) to (2018 - 20)	Inter (Part - I)
Mathematics (Subjective)	Inter - A -2019	Time 2:30 Hours Marks: 80	

Note: It is compulsory to attempt any (8 - 8) Parts each from Q.No. 2 and Q.No.3 while attempt any (9) Parts from Q.No.4. Attempt any (3) Questions from Part - II. Write same Question No. and its Part No. as given in the Question Paper.

Part - I

 $25 \times 2 = 50$

		1'art - 1							
.No.2	(i) 1	f Z ₁ and Z ₂ are complex numbers then	how	that $\overline{Z_1}\overline{Z_2} = \overline{Z_1}\overline{Z_2}$					
,.140.2	(1)	1 21 414 22 4.0 004	_ :	3 1)					
	(ii) 1	If $A = \begin{pmatrix} 2 & 3 & -2 \\ -1 & 1 & 5 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -3 & 1 \\ 5 & 4 & -1 \end{pmatrix}$ then solve the equation							
		-1 1 5) (5 T -1)							
		3x - 2A = B for X.	(iv)	If A and B are Overlapping Sets then					
	(iii)	Separate into itear and imaginary	(,	draw the Venn Diagram of A-B					
		$\frac{2-7i}{4+5i}$							
	(2.1)	Find the Multiplicative Inverse of -3 - 5i	(vi)	Find Four 4th Roots of 81					
			(viii)	Without expansion show that :					
		1		1 0 0 11					
		an example.		$\begin{bmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{bmatrix} = 0$					
				2 -3 5					
	(1)	Define Identity Matrix and give an	(x)	Show that the roots of $px^2 - (p - q)x - q = 0$					
		example.		are rational.					
	(xi)	If α , β are the roots of $x^2 - px - p - c = 0$	(xii)	Define Monoid.					
	(21)	then prove that $(1+\alpha)(1+\beta) = 1-c$							
		then prove that $(1+\alpha)(1+\beta)=1-\alpha$ 1							
Q.No.3	(i)	then prove that $(1+\alpha)(1+\beta) = 1-c$ For the identity $\frac{1}{(x-1)(2x-1)(3x-1)} = \frac{A}{x-1} + \frac{B}{2x-1} + \frac{C}{3x-1}$ calculate the value of A							
	(ii)	Find the indicated term of the sequence	: 2,	6,11,17, a ₇					
		Find the maleuted term of the A.P. if i	a. = 1	5 and other three consecutive terms are					
	(iii)	Write the first four terms of the A.P. if $a_1 = 5$ and other three consecutive terms are							
	4: >	23, 26, 29. Find the 12 th term of the Geometric Sequence: 1 + i, 2i, -2 + 2i, Find the 12 th term of the Geometric Sequence: 1 + i, 2i, -2 + 2i,							
	(iv)	V-1 and to the numbers a and bis 5 and their positive division of							
	(v) ~	values of a and b.							
	(vi)	to the state of th							
	(vii)	How many words can be formed from the letters of the word "OBJECT" using all							
	(0)	letters without repeating any letter?							
	(viii)	Prove that $\frac{8 \times 10^{n}-2}{6}$ is an integer for n = 1 and n = 2.							
	(VIII)	6 2 3 10							
	(ix)	Find 6 th term in the expansion of $(x^2 - \frac{3}{2x})^{10}$							
	(x)	to the state of th							
	(xi)	Detiend Exection							
		4							
	(xii)	Resolve $\frac{1}{x^2-1}$ into Partial Fractions.							
Q.No.4	400	Define Degree Measure.	(ii)	Solve Sinx = $\frac{1}{2}$					
				Sin 8x + Sin 2x					
	(iii)	Find the solutions in $[0, 2\pi]$ Cot $\theta = \frac{1}{\sqrt{3}}$	(iv)	Prove $\frac{3th 8x + 3th 2x}{\cos 8x + \cos 2x} = \text{Tan5x}$					
	1.0	Prove that $Cos(Sin^{-1}x) = \sqrt{1 - x^2}$	(vi)	Y					
	(v)			2					
	(vii)	If $\sin\theta = -\frac{1}{2}$, terminal arm of θ is not in III Quadrant, find $\tan\theta$.							
	4	β and β find the angle β .							
	(viii)	The area of a $\triangle ABC$ is 2437. If $a = 75$ and							
	(ix)	Prove that $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$							
	(x)	Prove that $(Sec\theta - Tan\theta)^2 = \frac{1 - Sln\theta}{1 + Sln\theta}$							
	(xi)	Prove Sin (a+p). Sin (a-p) - Sin a	a contract the state of a AARC						
		Prove $\sin(\alpha + \beta) \cdot \sin(\alpha + \beta) = \sin \alpha$ If $B = 52^{\circ}$, $\nu = 89^{\circ}35$, $a = 89 \cdot 35$ find	the s	side b of a $\triangle ABC$					
	(xi)	If $\beta = 52^{\circ}$, $\gamma = 89^{\circ}35^{\prime}$, $a = 89.35$ find	the s	side b of a $\triangle ABC$					
		Prove $\sin(\alpha + \beta) \cdot \sin(\alpha + \beta) = \sin(\alpha + \beta)$. If $\beta = 52^{\circ}$, $\gamma = 89^{\circ}35^{\circ}$, $\alpha = 89 \cdot 35$ find Prove $\sqrt{\frac{1 + \sin \alpha}{1 - \sin \alpha}} = \frac{\sin \frac{\alpha}{2} + \sin \frac{\alpha}{2}}{\sin \frac{\alpha}{2} - \sin \frac{\alpha}{2}}$	the s	side b of a $\triangle ABC$					