Roll	No. LMR.	(To be filled in by the	, undidate)			
PHY		017 to 2017 - 2019)	ne Allowed : 20 Minutes			
Q.PA	P,ER – II (Objective Type) GROUP	– I Ma	ximum Marks : 17			
Nista	PAPER CODE	= 8475				
Note	: Four possible answers A, B, C and D to each ques fill that circle in front of that question with Mar two or more circles will result in zero mark in the	ker or Pen ink in the answ at question.	which you think is correct, er-book. Cutting or filling			
1-1	In p-type substances, the majority charge car	riers are :	ŷ.			
	(A) Electrons (B) Protons	(C) Holes	(D) Montree			
2	Commutators are used in :	(0) 110103	(D) Neutrons			
	(A) D.C. generators (B) A.C. generator					
3			(D) A.C. rotator			
	The factor $\frac{n}{m_o c}$ in Compton equation has the dimension of :					
	(A) Pressure (B) Length					
4	Sec/Ohm is equal to :	(C) Mass	(D) Momentum			
5	(-) coulomb	(C) Joule	(D) Ampere			
	Number of neutrons in $^{235}_{92}U$:		5.			
	(A) 92 (B) 235	(C) 143	(D) 327			
6	The sum of negative and positive peak values	is :				
	(A) Average value (B) rms value	(C) Peak value	(D) p-p value			
7	The magnetic force is simply a :					
	(A) Reflecting force (B) Restoring f	force				
	(C) Deflecting force (D) Gravitation	al force				
8	If a charged body is moved against the electric	c field, it will gain :				
	(A) P.E. (B) K.E (C) Mechan		trical potential answer			
9	The common emitter current amplification fac	$tor \beta$ is given by \cdot	trical potential energy			
	7	ber program by .				
		I.,	7			
	(A) $\frac{I_C}{I_F}$ (B) $\frac{I_C}{I_S}$	(C) $\frac{I_E}{I}$	(D) $\frac{I_B}{I_B}$			
10	(A) $\frac{I_C}{I_E}$ (B) $\frac{I_C}{I_B}$ Energy of the 4 th orbit in hydrogen atom is :	(C) $\frac{I_E}{I_B}$	(D) $\frac{I_B}{I_C}$			
10	Energy of the 4 th orbit in hydrogen atom is :					
10	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV	(C) $\frac{I_E}{I_B}$ (C) -13.6 eV				
	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is :	(C) – 13.6 eV	(D) – 0.85 eV			
	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is :	(C) – 13.6 eV	(D) – 0.85 eV			
11	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is :	(C) – 13.6 eV	(D) – 0.85 eV			
11	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA	(C) - 13.6 eV $(C) Zero$ $(C) Then the unit of 1 then the u$	(D) -0.85 eV (D) Infinite $\frac{\overline{E}}{\overline{B}}$ is :			
11	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA	(C) - 13.6 eV $(C) Zero$ $(C) Then the unit of 1 then the u$	(D) -0.85 eV (D) Infinite $\frac{\overline{E}}{\overline{B}}$ is :			
11	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA (A) ms^{-2} (B) $m^{-1}s^{-1}$ X-rays are the electromagnetic radiations havi	(C) -13.6 eV (C) Zero (C) Zero (C) ms (C) ms ing the wavelength in range	(D) -0.85 eV (D) Infinite $\frac{\overline{E}}{\overline{B}}$ is : (D) ms^{-1} ge :			
11 12 13	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA (A) ms^{-2} (B) $m^{-1}s^{-1}$ X-rays are the electromagnetic radiations havi (A) $10^{-12}m$ (B) $10^{-10}m$	(C) -13.6 eV (C) Zero (C) Zero (C) ms (C) ms ing the wavelength in range	(D) -0.85 eV (D) Infinite $\frac{\overline{E}}{\overline{B}}$ is : (D) ms^{-1} ge :			
11	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA (A) ms^{-2} (B) $m^{-1}s^{-1}$ X-rays are the electromagnetic radiations havi (A) $10^{-12}m$ (B) $10^{-10}m$ To construct a step up transformer :	$(C) - 13.6 \text{ eV}$ $(C) Zero$ $(C) Zero$ $(C) ms$ $(C) ms$ $(C) ms$ $(C) 10^{-8}m$	(D) -0.85 eV (D) Infinite $\frac{\overline{E}}{\overline{B}}$ is : (D) ms^{-1} ge : (D) $10^{-6}m$			
11 12 13 14	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA (A) ms^{-2} (B) $m^{-1}s^{-1}$ X-rays are the electromagnetic radiations havi (A) $10^{-12}m$ (B) $10^{-10}m$ To construct a step up transformer : (A) $N_s > N_p$ (B) $N_s < N_p$	$(C) - 13.6 \text{ eV}$ $(C) Zero$ $(C) Zero$ $(C) ms$ $(C) ms$ $(C) ms$ $(C) 10^{-8}m$ $(C) N_s = N_p$	(D) -0.85 eV (D) Infinite $\overline{\overline{B}}$ is : (D) ms^{-1} ge : (D) $10^{-6}m$ (D) $N_sN_n = 1$			
11 12 13	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA (A) ms^{-2} (B) $m^{-1}s^{-1}$ X-rays are the electromagnetic radiations havi (A) $10^{-12}m$ (B) $10^{-10}m$ To construct a step up transformer : (A) $N_s > N_p$ (B) $N_s < N_p$	$(C) - 13.6 \text{ eV}$ $(C) Zero$ $(C) Zero$ $(C) ms$ $(C) ms$ $(C) ms$ $(C) 10^{-8}m$ $(C) N_s = N_p$	(D) -0.85 eV (D) Infinite $\overline{\overline{B}}$ is : (D) ms^{-1} ge : (D) $10^{-6}m$ (D) $N_sN_n = 1$			
11 12 13 14	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA (A) ms^{-2} (B) $m^{-1}s^{-1}$ X-rays are the electromagnetic radiations havi (A) $10^{-12}m$ (B) $10^{-10}m$ To construct a step up transformer :	$(C) - 13.6 \text{ eV}$ $(C) Zero$ $(C) Zero$ $(C) ms$ $(C) ms$ $(C) ms$ $(C) 10^{-8}m$ $(C) N_s = N_p$ $(C) N_s = N_p$ $(C) N_s = N_p$ $(C) N_s = N_p$	(D) -0.85 eV (D) Infinite $\frac{\overline{E}}{\overline{B}}$ is : (D) ms^{-1} ge : (D) $10^{-6}m$ (D) $N_sN_p = 1$ of each wire is :			
11 12 13 14	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA (A) ms^{-2} (B) $m^{-1}s^{-1}$ X-rays are the electromagnetic radiations havi (A) $10^{-12}m$ (B) $10^{-10}m$ To construct a step up transformer : (A) $N_s > N_p$ (B) $N_s < N_p$ When a wire of resistance R is cut into two equations is the state of the stat	$(C) - 13.6 \text{ eV}$ $(C) Zero$ $(C) Zero$ $(C) ms$ $(C) ms$ $(C) ms$ $(C) 10^{-8}m$ $(C) N_s = N_p$	(D) -0.85 eV (D) Infinite $\overline{\overline{B}}$ is : (D) ms^{-1} ge : (D) $10^{-6}m$ (D) $N_sN_n = 1$			
11 12 13 14 15	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA (A) ms^{-2} (B) $m^{-1}s^{-1}$ X-rays are the electromagnetic radiations havi (A) $10^{-12}m$ (B) $10^{-10}m$ To construct a step up transformer : (A) $N_s > N_p$ (B) $N_s < N_p$ When a wire of resistance R is cut into two eq (A) Double (B) Half The gain of non-inverting amplifier is :	$(C) - 13.6 \text{ eV}$ $(C) Zero$ $(C) Zero$ $(C) ms$ $(C) ms$ $(C) ms$ $(C) 10^{-8}m$ $(C) N_s = N_p$ $(C) N_s = N_p$ $(C) Remain same$	(D) -0.85 eV (D) Infinite $\frac{\overline{E}}{\overline{B}}$ is : (D) ms^{-1} ge : (D) $10^{-6}m$ (D) $N_s N_p = 1$ of each wire is : (D) One forth			
11 12 13 14 15	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA (A) ms^{-2} (B) $m^{-1}s^{-1}$ X-rays are the electromagnetic radiations havi (A) $10^{-12}m$ (B) $10^{-10}m$ To construct a step up transformer : (A) $N_s > N_p$ (B) $N_s < N_p$ When a wire of resistance R is cut into two eq (A) Double (B) Half The gain of non-inverting amplifier is :	$(C) - 13.6 \text{ eV}$ $(C) Zero$ $(C) Zero$ $(C) ms$ $(C) ms$ $(C) ms$ $(C) 10^{-8}m$ $(C) N_s = N_p$ $(C) N_s = N_p$ $(C) Remain same$	(D) -0.85 eV (D) Infinite $\frac{\overline{E}}{\overline{B}}$ is : (D) ms^{-1} ge : (D) $10^{-6}m$ (D) $N_s N_p = 1$ of each wire is : (D) One forth			
11 12 13 14 15	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA (A) ms^{-2} (B) $m^{-1}s^{-1}$ X-rays are the electromagnetic radiations havi (A) $10^{-12}m$ (B) $10^{-10}m$ To construct a step up transformer : (A) $N_s > N_p$ (B) $N_s < N_p$ When a wire of resistance R is cut into two eq (A) Double (B) Half The gain of non-inverting amplifier is : (A) $1 + \frac{R_2}{R_1}$ (B) $1 + \frac{R_1}{R_2}$	$(C) - 13.6 \text{ eV}$ $(C) Zero$ $(C) Zero$ $(C) ms$ $(C) ms$ $(C) ms$ $(C) 10^{-8}m$ $(C) N_s = N_p$ $(C) N_s = N_p$ $(C) N_s = N_p$ $(C) N_s = N_p$	(D) -0.85 eV (D) Infinite $\frac{\overline{E}}{\overline{B}}$ is : (D) ms^{-1} ge : (D) $10^{-6}m$ (D) $N_sN_p = 1$ of each wire is :			
11 12 13 14 15 16	Energy of the 4 th orbit in hydrogen atom is : (A) -2.51 eV (B) -3.50 eV Resistance in choke is : (A) Large (B) Very small The unit of \overline{E} is NC ⁻¹ and that of \overline{B} is NA (A) ms^{-2} (B) $m^{-1}s^{-1}$ X-rays are the electromagnetic radiations havi (A) $10^{-12}m$ (B) $10^{-10}m$ To construct a step up transformer : (A) $N_s > N_p$ (B) $N_s < N_p$ When a wire of resistance R is cut into two eq (A) Double (B) Half The gain of non-inverting amplifier is :	$(C) - 13.6 \text{ eV}$ $(C) Zero$ $(C) Zero$ $(C) ms$ $(C) ms$ $(C) ms$ $(C) 10^{-8}m$ $(C) N_s = N_p$ $(C) N_s = N_p$ $(C) Remain same$	(D) -0.85 eV (D) Infinite $\frac{\overline{E}}{\overline{B}}$ is : (D) ms^{-1} ge : (D) $10^{-6}m$ (D) $N_s N_p = 1$ of each wire is : (D) One forth			

6

190-219-I-(Objective Type)- 11750 (8475)

~

Roll No		the candidate)
PHYS	(Academic Sessions 2015 – 2017 to 2017 – 2019) ICS 219-(INTER PART – II) ICS GROUP – I	Time Allowed : 2.40 hours Maximum Marks : 68
	SECTION – I	
2. Wr	ite short answers to any EIGHT (8) questions :	16
(i)	State Gauss's law and write its mathematical relation.	
(ii)	Define electron volt and show that $1 eV = 1.6 \times 10^{-19} J_{*}$	
(iii)	Electric lines of force never cross. Why?	
(iv)	Do electrons tend to go to region of high potential or of low potent	ial?
(v)	State Lorentz force and write its formula.	
(vi)	Write two uses of cathode ray oscilloscope.	
(vii)	How can you use a magnetic field to separate isotopes of chemical	element?
(viii)	Why the resistance of an ammeter should be very low?	
(ix)	How the induced current can be increased?	
(x)	What is motional emf and write its mathematical relation?	
(xi)	Does the induced emf in a circuit depend on the resistance of the c	ircuit? Explain.
(xii)	Show that ε and $\frac{\Delta \phi}{\Delta t}$ have the same units.	
3. Wr	ite short answers to any EIGHT (8) questions :	16
(i)	Define conventional current and solar cell.	
(ii)	Define electrolysis and basic principle of electroplating.	
(iii)	Why does the resistance of a conductor rise with temperature?	
(iv)	Define peak value and peak to peak value of voltage or current.	
(v)	A sinusoidal current has rms of 10A. What is the peak value?	
(vi)	What are superconductors?	
(vii)	What is meant by para, diamagnetic substances?	
(viii)	What is meant by strain energy?	
(ix)	Draw the truth table of XNOR gate.	
(x) (xi)	Why ordinary silicon diodes do not emit light? Why is the base current in a transistor very small?	
	Define intrinsic and extrinsic semi-conductor.	
	ite short answers to any SIX (6) questions :	12
(i)	Will higher frequency light eject greater number of electrons than	
(ii)	Photon A has twice the energy of photon B. What is the ratio of m	
(iii)	What is the energy of photon in a beam of infrared radiation of wa	
(iv)	What are the advantages of LASER over ordinary light?	-
(v)	Can the electron in ground state of hydrogen absorb a photon of engreater than 13.6 eV?	ergy 13.6 eV and

(vi) Define the isotopes of an element. Write down the isotopes of hydrogen.

R	oll No	(Academic Sessions 2015 201 219-(INTER PAR	(To be filled in by the can	didate) 20(S			
P	HYSI	(Academic Sessions 2015 201 ICS 219-(INTER PAR ER – II (Objective Type) GROUP - PAPER CODE	- II Maxim	Allowed : 20 Minutes Jum Marks : 17			
N	ote :	Four possible answers A, B, C and D to each questi fill that circle in front of that question with Marke two or more circles will result in zero mark in that	ion are given. The choice whi er or Pen ink in the answer-b				
	1-1	energy during this time :					
		(A) $6.63 \times 10^{-34} J$ (B) $9.1 \times 10^{-31} J$	(C) $1.05 \times 10^{-26} J$	(D) $7.2 \times 10^{-15} J$			
	2	The velocity of an oscillating charge as it mov	es to and fro along the wire	is :			
		(A) Infinite (B) Constant	(C) Changing	(D) Zero			
	3	The value of $\frac{e}{m}$ is smallest for :					
	4	(A) Proton (B) Electron		(D) Positron			
	4	Which factor does not affect the conductivity of					
	5	(A) Doping (B) Temperature At what frequency will an inductor of 1.0 H ha		(D) Pressure			
(Ser.			(C) 500 Hz	(D) 1000 Hz			
	6	It is required to suspend a proton of charge 'q'					
		the field must be :		inere the strength of			
		(A) $E = \frac{mg}{qv}$ (B) $E = \frac{mg}{q}$	(C) $E = \frac{q}{mg}$	(D) $E = \frac{qv}{B}$			
	7	The binding energy per nucleon is maximum f	for :				
		(A) Hydrogen (B) Nitrogen	(C) Uranium	(D) Iron			
	8	Henry is equal to = (A) VSA^{-1} (B) $VS^{-1}A$	(C) $V^{-1}S^{-1}A$	(D) $V^{-1}S^{-1}A^{-1}$			
	9						
		(A) 5.67×10^{-8} (B) 2.9×10^{-3}	(C) 6.63×10^{-34}	(D) 1.6×10^{-19}			
	10	The electrostatic force between two charges is					
		between the charges then the force become eq	ual to :				
		(A) 42 N (B) 84 N	(C) 20 N	(D) 2 N			
	11	Good conductors have conductivities of the or	rder of :				
		(A) $10^{-7} (\Omega m)^{-1}$ (B) $10^{7} (\Omega m)^{-1}$	(C) $10^2 (\Omega m)^{-1}$	(D) $10^{-2} (\Omega m)^{-1}$			
	12	The value of charge on 1.0×10^7 electrons is					
		(A) $1.6 \times 10^{-12}C$ (B) $1.6 \times 10^{+11}C$		(D) $1.6 \times 10^{+19} C$			
	13	The numerical value of Rydberg's constant is		<u></u>			
		(A) 1.0974×10^7 (B) 1.0974×10^{-7}		(D) 1.0974×10 ⁻¹⁴			
	14	The Boolean expression of NAND gate is :	(0) 11071110	(_)			
		(A) $X = A.B$ (B) $X = \overline{A}$	(C) $X = \overline{AB}$	(D) $X = A + B$			
	15	By mass spectrograph we can find the value o	of mass by using formula :	(_)			
		(A) $m = \left(\frac{e^2 r^2}{2V}\right) B^2$ (B) $m = \left(\frac{er^2}{2V}\right) B^2$	² (C) $m = \left(\frac{eV}{2r^2}\right)B$	(D) $m = \left(\frac{eV^2}{2r}\right)B$			
	16	Maximum emf generated in a generator is :					
		(A) $\varepsilon_o = \varepsilon \sin \theta$ (B) $\varepsilon = \varepsilon_o \sin \theta$	(C) $\varepsilon_o = N\omega AB\sin\theta$	(D) $\varepsilon_o = N\omega AB$			
	17	The unit of \vec{E} is NC^{-1} and that of \vec{B} is NA	$t^{-1}m^{-1}$ then the unit of $\frac{E}{R}$ is	s :			
		(A) ms^{-2} (B) ms	(C) $m^{-1}s^{-1}$	(D) ms^{-1}			
	L	22	27-219-II-(Objective Type	e)- 8500 (8478)			
			× • • • I	ata di Carto			

	Roll No.	(To be filled in by)	the candidate)	
	PHYSIC	219-(INTER PART – II)	Time Allowed : 2.40 hours Maximum Marks : 68	,
	2. Wri	te short answers to any EIGHT (8) questions :	1	6
	(i)	What is electric intensity? What is its SI unit? Show that $\frac{1 \text{ volt}}{1 \text{ meter}} = \frac{1 \text{ Newton}}{1 \text{ Coulomb}}$		
		Describe the force or forces on a positive point charge when placed with similar and equal charges.		
	(iv)	Do electrons tend to go to region of high potential or of low potent	ial?	
	(v)	Describe the change in the magnetic field inside a solenoid carryin the length of the solenoid is doubled but the number of turns remain	g a steady current I, if ins the same.	
	(vi)	What is CRO? What is the function of grid in CRO?		
	(vii)	Define ammeter. How can we increase the range of an ammeter?	· · · · · · · · · · · · · · · · · ·	
	(viii)	Suppose that a charge q is moving in a uniform magnetic field w there no work done by the magnetic force that acts on the charge c	1:	
	(ix)	State Faraday's law of electromagnetic induction and also write ex	pression for it.	
	(x)	Define mutual inductance of the coils and also define its unit henry	у.	
		Does the induced emf in a circuit depend on the resistance of the or induced current depend on the resistance of the circuit?		
	(xii)	In a transformer, there is no transfer of charge from the primary to the power transferred?	secondary. How is, then	16
	3. W	rite short answers to any EIGHT (8) questions :		16
	(i)	Define temperature coefficient of resistance and write its formula	What is the effect on the	
	(ii)	A potential difference is applied across the ends of a copper wire, drift velocity of free electrons by decreasing the length and the te	inperature of the there	
	(iii)		bulb than in a 100 w, 220 v:	
of the	(iv)	What is impedance? Write its formula.	1	
	(v)		m or peak value?	
	(vi)			
	(vii			
	(viii) Define stress and strain. What are their SI units?		
	(ix) What is meant by hysteresis loss?		
	(x) What is depletion region?	Country motion of holes	
) How does the motion of an electron in a n-type substance differ in a p-type substance?	from the motion of holes	
		i) What is the principle of virtual ground?		12
	(Write short answers to any SIX (6) questions : i) Define Compton effect. At what angle Compton shift becomes Compton wave length? 		12
	(i	i) As a solid is heated and begins to glow, why does it first appear	red?	

(iii) What happens to radiation energy from a blackbody if its temperature is doubled?