Roll No: 1 - 1 1 1 1 2019 2019 (A) INTERMEDIATE PART-I (11th CLASS) TIME ALLOWED: 2.30 Hours **GROUP-I**

SUBJECTIVE

MATHEMATICS PAPER-I

MAXIMUM MARKS: 80 NOTE: - Write same question number and its part number on answer book, as given in the question paper. **SECTION-I** $8 \times 2 = 16$ Attempt any eight parts. 2. Express $(2 + \sqrt{-3})(3 + \sqrt{-3})$ in the form of a + bi and simplify. (i) Find the multiplicative inverse of (-4, 7)(ii) Factorize $9a^2 + 16b^2$ (iii) Define union of two sets and give an example. (iv) If A and B are any two sets then prove $(A \cup B)' = A' \cap B'$ (v) Define tautology and absurdity. (vi) If A and B are non singular matrices then prove $(AB)^{-1} = B^{-1}A^{-1}$ (vii) Find the inverse of matrix $A = \begin{bmatrix} -2 & 3 \\ -4 & 5 \end{bmatrix}$ (viii) If $A = \begin{bmatrix} 0 & 2 - 3i \\ -2 - 3i & 0 \end{bmatrix}$ then show that A is skew-hermitian. (ix) Solve the equation $x^{\frac{1}{2}} - x^{\frac{1}{4}} - 6 = 0$ (x) Using factor theorem show that (x - 1) is a factor of $x^2 + 4x - 5$ (xi) The sum of a positive number and its reciprocal is $\frac{26}{5}$. Find the number. (xii) $8 \times 2 = 16$ Attempt any eight parts. 3. Define "Proper Rational Fraction". (i) Resolve $\frac{x^2 + 1}{(x+1)(x-1)}$ into Partial Fractions. (ii) For the identity $\frac{2x+1}{(x-1)(x+2)(x+3)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x+3}$ Calculate the value of B. (iii) Find the next two terms of the sequence: 1, 3, 7, 15, 31, ----(iv) If the nth term of the A.P is 3n - 1, find its first three terms. (v) Find the 11th term of the geometric sequence: 1 + i, 2, $\frac{4}{1 + i}$, ---(vi) Insert two G. Ms. between 1 and 8. (vii) Find the 12th term of the harmonic sequence: $\frac{1}{3}, \frac{2}{9}, \frac{1}{6}, ---$ (viii) Find the value of *n* when ${}^{n}P_4: {}^{n-1}P_3 = 9:1$ (ix) Prove the formula for n = 1 and n = 2: $1 + 4 + 7 + - - + (3n - 2) = \frac{n(3n - 1)}{2}$ (x) Calculate $(0.97)^3$ by using binomial theorem. (xi) Expand upto 4 terms: $(2 - 3x)^{-2}$ taking the values of x such that expansion is valid. (xii)

P.T.O.

Pan	er · Code 2019 (A) Roll No:
	aber: 2195 INTERMEDIATE PART-I (11 th CLASS)
t-	THEMATICS PAPER-I GROUP-I TIME ALLOWED: 30 Minutes
	OBJECTIVE MAXIMUM MARKS: 20
thin Cutt give	e: You have four choices for each objective type question as A, B, C and D. The choice which you k is correct, fill that bubble in front of that question number. Use marker or pen to fill the bubbles. ing or filling two or more bubbles will result in zero mark in that question. Attempt as many questions a n in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES not filled. Do not solve questions on this sheet of OBJECTIVE PAPER. 0.1
(1)	If $a_n = (-1)^{n+1}$, then $a_{26} =$ (A) 1 (B) - 1 (C) <i>i</i> (D) - <i>i</i>
(2)	Geometric Mean between $4i$ and $-16i$ is: (A) 8 (B) - 8 (C) ± 8 (D) ± 64
(3)	The factorial form of $n(n-1)(n-2) (n-r+1)$ is:
	(A) $\frac{n!}{(n-r)!}$ (B) $(n-1)!$ (C) $n!$ (D) $\frac{n!}{(n-r+1)!}$
(4)	When A and B are two disjoint events, then $P(A \cup B) =$
	(A) $P(A) - P(B)$ (B) $P(A) + P(B) - P(A \cap B)$ (C) $P(A) - P(A \cap B)$ (D) $P(A) + P(B)$
(5)	The statement $4^n > 3^n + 4$ is true if: (A) $n < 2$ (B) $n \neq 2$ (C) $n \ge 2$ (D) $n \le 2$
(6)	In the expansion of $(3 - 2x)^8$, 5 th term will be its:
	(A) Last term (B) 2 nd last term (C) 3 rd last term (D) Middle term
(7)	The measure of angle between hands of a watch at 3 0'clock is: (A) 30° (B) 60° (C) 90° (D) 120°
(8)	The angle $\frac{3\pi}{2} - \theta$ lies in quadrant: (A) I (B) II (C) III (D) IV
(9)	Range of the function $y = \cos x$ is:
	(A) $-\infty < x < \infty$ (B) $-\infty < y < \infty$ (C) $-1 \le y \le 1$ (D) $-1 \le x \le 1$
(10)	In a $\triangle ABC$ with usual notation $\sqrt{\frac{s(s-a)}{bc}} =$ (A) $\sin \frac{\alpha}{2}$ (B) $\cos \frac{\alpha}{2}$ (C) $\cos \frac{\beta}{2}$ (D) $\sin \frac{\beta}{2}$
(11)	Area of $\triangle ABC$ in terms of measure of its all sides is: (A) $\frac{1}{2}bc\sin\alpha$ (B) $\frac{c^2\sin\alpha\sin\beta}{2\sin\gamma}$ (C) $\frac{1}{2}ca\sin\beta$ (D) $\sqrt{s(s-a)(s-b)(s-c)}$
(12)	
() 3)	Solution set of $\sin x = \frac{1}{2}$ is:
	(A) $\left\{\frac{4\pi}{3}, \frac{5\pi}{3}\right\}$ (B) $\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$ (C) $\left\{\frac{\pi}{3}, \frac{4\pi}{3}\right\}$ (D) $\{0, \pi\}$
(14)	If $i = \sqrt{-1}$, then $i^{14} =$
	(A) 1 (B) -1 (C) i (D) $-i$
(15)	
	$(A) \longrightarrow (B) \land (C) \longleftrightarrow (D) \lor$
(16)	
	(A) $A^{-1}B$ (B) BA^{-1} (C) $(AB)^{-1}$ (D) $(BA)^{-1}$
(17)	4 5 2
(18)	The number of roots of polynomial $8x^6 - 19x^3 - 27 = 0$ are: (A) 2 (B) 4 (C) 6 (D) 8
(19)	If $s = sum$ of roots and $p = product$ of roots, then quadratic equation can be written as:
	(A) $x^2 + sx + p = 0$ (B) $x^2 - sx - p = 0$ (C) $x^2 - sx + p = 0$ (D) $sx^2 - sx + p = 0$
(20)	$\frac{2x^2}{(x-3)(x+2)^2}$ is a fraction: (A) Proper (B) Improper (C) Identity (D) Irrational
	13(Obj)(2 2 2)-2019(A)-25000 (MULTAN)

INTERMEDIATE PART-I (11th CLASS)

2019 (A)

MATHEMATICS PAPER-I GROUP-II

TIME ALLOWED: 2.30 Hours

Roll No:

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

 $8 \times 2 = 16$

 $8 \times 2 = 16$

P.T.O.

- Attempt any eight parts.
 (i) Find the multiplicative inverse of (-4, 7)
- (ii) Simplify $(i)^{-3}$

2.

3.

(iii) Simplify
$$\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^2$$

- (iv) Write down the power set of $\{a, \{b, c\}\}$
- (v) Show that $p \rightarrow (q \lor p)$ is tautology or not.
- (vi) For $A = \{1, 2, 3, 4\}$ find the relation $\{(x, y) | x + y < 5\}$ in A.
- (vii) State any two properties of determinants.
- (viii) Show that for a non-singular matrix A, $(A^{-1})^{-1} = A$

(ix) Without expansion prove that
$$\begin{vmatrix} 1 & 2 & 3x \\ 2 & 3 & 6x \\ 3 & 5 & 9x \end{vmatrix} = 0$$

(x) Reduce $2x^4 - 3x^3 - x^2 - 3x + 2 = 0$, into quadratic form.

(xi) Solve the equation
$$x^3 + x^2 + x + 1 = 0$$

(xii) Define exponential equation.

Attempt any eight parts.

- (i) Resolve $\frac{x^2 + 1}{(x+1)(x-1)}$ into partial fractions.
- (ii) Define improper rational fraction.
- (iii) For the identity $\frac{1}{(x+1)^2 (x^2-1)} \equiv \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2} + \frac{D}{(x+1)^3}$ Calculate the values of A and D.
- (iv) Write first four terms of the sequence $a_n = 3n 5$
- (v) Find the 13th term of the sequence $x_1, 2-x, 3-2x, ----$
- (vi) How many terms of the series -7 + (-5) + (-3) + --- amount to 65?
- (vii) Insert two G.Ms. between "2" and "16".
- (viii) Write two relations between A, G, H, in which A = Arithmetic Mean, G = Geometric Mean, H = Harmonic Mean.
- (ix) How many arrangements of the letters of the word "ATTACKED", taken all together, can be made?
- (x) Prove the given formula for n = 1, 2 $1 + \frac{1}{2} + \frac{1}{4} + - + \frac{1}{2^{n-1}} = 2\left[1 \frac{1}{2^n}\right]$
- (xi) Calculate $(9.98)^4$ by means of binomial theorem.

If x is so small that its square and higher powers can be neglected, then show that (xii) $\frac{1-x}{\sqrt{1-x}} = 1 - \frac{3}{2}x$

120		
- [Paper	O100 INTEDMEDIATE DADT.I (11 th CLASS)
•	Note:	CHEMATICS PAPER-I GROUP-II TIME ALLOWED: 30 Minutes OBJECTIVE MAXIMUM MARKS: 20 Structure Structure
	Cuttin given	ng or filling two or more bubbles will result in zero mark in that question. Attempt as many questions a in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES of filled. Do not solve questions on this sheet of OBJECTIVE PAPER. 1
	(1)	If $a > 0$ then: (A) $2a < 0$ (B) $\frac{1}{a} < 0$ (C) $-a > 0$ (D) $-a < 0$
	(2)	The number of subsets of a set having 4 elements is: (A) 4 (B) 16 (C) 8 (D) 10
	(3)	If all the entries of a column of a square matrix A are zero then: (A) $ A > 0$ (B) $ A < 0$ (C) $ A = 0$ (D) None of these
	(4)	If A and B are two non-singular matrices then $(AB)^{-1}$ is equal to: (A) $A^{-1}B^{-1}$ (B) $B^{-1}A^{-1}$ (C) BA (D) AB
	(5)	If $x^2 - 3 = 0$ then sum of roots is: (A) Zero (B) 3 (C) -3 (D) 1
	(6)	If one root of $x^2 + 1 = 0$ is <i>i</i> then other root is: (A) -1 (B) $-i$ (C) 1 (D) ± 1
	(7)	A fraction $\frac{N(x)}{D(x)}$ is called Proper Rational Faction if:
		(A) Degree of $N(x) <$ Degree of $D(x)$ (B) Degree of $N(x) >$ Degree of $D(x)$ (C) Degree of $N(x) \leq$ Degree of $D(x)$ (D) Degree of $D(x) \leq$ Degree of $N(x)$
	(8)	For an infinite Geometric series for which $ r < 1$, $S_n = _$ where $n \to \infty$
		(A) $\frac{a_1(1+r)}{1-r}$ (B) $\frac{a_1}{1+r}$ (C) $\frac{a_1}{2r}$ (D) $\frac{a_1}{1-r}$
	(9)	With usual notations, $\sum_{k=1}^{n} k^3$ equal to:
		(A) $\frac{n(n+1)}{4}$ (B) $\frac{n(n+1)}{2}$ (C) $\left(\frac{n(n+1)}{2}\right)^2$ (D) $n(n+1)$
	(10) (11)	How many ways 5 keys can be arranged on a circular key ring? (A) 12 (B) 5 (C) 4 (D) 3 ^{<i>n</i>} P_r equals: (A) ^{<i>n</i>} C_r (B) $r ! \times {}^n C_r$ (C) $\frac{1}{r!} \times {}^n C_r$ (D) $r \times {}^n C_r$
6		In the expansion of $(1 + x)^n$, the sum of binomial coefficients is:
	(12)	(A) n (B) $n+1$ (C) 2^n (D) 2^{n-1}
ŝ	(13)	$n! > n^2$ is true for integral value of n : (A) $n = 3$ (B) $n = 4$ (C) $n = 2$ (D) $n = 1$
	(14)	The vertex of an angle in standard form is at: $(A)(1,0)$ $(B)(0,1)$ $(C)(1,1)$ $(D)(0,0)$
	(15)	$\sin(\alpha + \beta) + \sin(\alpha - \beta) \text{ equals:}$ (A) $2\sin\alpha\cos\beta$ (B) $2\cos\alpha\sin\beta$ (C) $\sin\alpha\cos\beta$ (D) $\sin\alpha$
	(16)	Domain of $\cos x$ function is: (A) W (B) N (C) \mathcal{R} (D) Z
	(17)	Circle which passes through vertices of a triangle is called: (A) Circum circle (B) Incircle (C) e-circle (D) Point circle
	(18)	With usual notations, $\frac{c^2 \sin \beta \sin \alpha}{2 \sin \gamma}$ is equal to: (A) Δ (B) Δ^2 (C) $\frac{\Delta}{2}$ (D) $\frac{\Delta^2}{2}$
		$Tan^{-1}\frac{1}{2} + Tan^{-1}\frac{1}{3}$ equals: (A) $Tan^{-1}3$ (B) $Tan^{-1}2$ (C) $Tan^{-1}1$ (D) $Tan^{-1}(-1)$
	(20)	Solution of equation $\tan x = \frac{1}{\sqrt{3}}$ is in:
		(A) I and II quadrant (B) I and III quadrant (C) II and IV quadrant (D) I quadrant $15(Obj)(\checkmark)-2019(A)-13000$ (MULTAN)