Paper: I

(A)

(A)

(A)

(A)

must lie in

of the fragments

60°

(A)

(A)

(A)

(A)

1

(B)

(B)

(B)

17. In one revolution the angular displacement covered is

mars

15. The maximum velocity required of an object to go out from the gravitational field in heavenly body is

16. When a body moves in a circular path, the angle between its line, velocity and angular velocity is

mercury

zero degree

360°

180° (D)

45°

(D)

(D)

4. Write short answers to any Six parts:

 $(6 \times 2 = 12)$

- i. Define the term Wavefront.
- ii. How would you manage to get more orders of spectra using a diffraction grating.
- iii. Explain whether the Young's experiment is an experiment for studying interference or diffraction effects of light.
- iv. Why would it be advantageous to use blue light with a compound microscope?
- v. Define critical angle and least distance of distinct vision.
- vi. State First Law of Thermodynamics.
- vii. Does the entropy of a system increase or decrease due to friction?
- viii. Explain why molar specific heat at constant pressure is greater than specific heat at constant volume.
- ix. A thermos flask containing milk as a system is shaken rapidly. Does the temperature of milk rise?

Section - II

 $(8 \times 3 = 24)$ Attempt any three (3) questions: Note:-Show that pressure exerted by the gas is directly proportional to the average translational kinetic (a) energy of the gas molecules. 5 Show that the expression $v_f = v_i + at$ is dimensionally correct, where v_i is the velocity at t = 0, (b) 3 a is acceleration and v_i , is the velocity at time t. What do you mean by torque? Derive the expression for the torque acting on a rigid body. 5 6. (a) 3 A ball is thrown horizontally from a height of 10m with velocity of $21ms^{-1}$. How far off it will hit the ground? Describe Newton's formula for the speed of sound in air and explain how it was corrected by Laplace? 5 (a) A car of mass 800kg travelling at 54 km/h is brought to rest in 60 meter. Find average retarding (b) 3 force on car. 5 Define simple pendulum. Show that motion of simple pendulum is simple harmonic motion. 8. (a) Also derive expression for its time period. What should be the orbiting speed to launch a satellite in a circular orbit 900 km above the surface 3 of the earth. Mass of earth = $6 \times 10^{24} kg$ and radius of earth = 6400 km. Describe the Young's double slit experiment to derive the relation for fringe spacing. 5 (a) 3 A telescope is made of a objective of focal length 20 cm and an eye piece of 5.0 cm, (b) both are convex lenses. Find the angular magnification.

Physi	Roll No Annual 2019 CS (New Scheme)
Paper: I	
	SUBJECTIVE
Note:-	Section I is compulsory. Attempt any 3 questions from Section II.
$(\underline{\text{Section}} - \underline{1})$	
2.	Write short answers to any Eight parts. $(8 \times 2 = 16)$
i.	Give the drawbacks to use the period of simple pendulum as time standards.
ii.	How the digit 5, if insignificant, will be rounded off?
iii.	Define the terms (i) Unit Vector (ii) Position Vector and write their mathematical expressions.
iv.	Is it possible to add a vector quantity to a scalar quantity? Explain.
V.	How would the two vectors of the same magnitude have to be oriented, if they were to be combined
	to give the resultant equal to a vector of the same magnitude?
vi.	Calculate the work done in kilo joules in lifting a mass of 10 kg (at a steady velocity)
	through vertical height of 10 m?
vii.	What sort of energy is in the following ?
	(a) compressed spring (b) a moving car
viii.	A person is standing near a fast moving train. Is there any danger that he will fall towards it?
ix.	In an orbiting space station, would the blood pressure in major arteries in the legs ever be greater
	than the blood pressure in major arteries in the neck?
х.	What is meant by phase angle? Does it define the angle between maximum displacement and the
	driving force?
xi.	Differentiate between Resonance and Damping.
xii.	Under what conditions does the addition of two simple harmonic motions produce a resultant,
	which is also simple harmonic?
3.	Write short answers to any Eight parts. $(8 \times 2 = 16)$
i.	State Law of Conservation of Momentum. What is its limitation?
ii.	Explain the circumstances in which the velocity \vec{v} and acceleration \vec{a} are parallel and anti parallel.
iii.	If angle of projection of a projectile is 90°. Find its range.
iv.	How can acceleration be found by velocity- time graph?
v.	What is meant by weightlessness?
vi.	Prove that orbital angular momentum depends upon the radius of the orbit.
vii.	What is meant by moment of inertia? Explain its significance.
viii.	Derive relation $S = r\theta$.
ix.	What do you know about radar speed trap?
х.	What are the quantities which affect the frequency of standing waves along a string?
xi.	What are the conditions for points which are in phase and out of phase?

xii. As we know $PV^r = \text{Constant}$. What do you know about r in this relation?

(Turn over)